A Boundary Diffusion Creep Model for the Plastic Deformation of Grain Boundary Phase of Nanocrystalline Materials

나노재료 입계상의 소성변형에 대한 입계확산크립 모델

  • 김형섭 (충남대학교 금속공학과) ;
  • 오승탁 (한양대학교 금속재료공학과) ;
  • 이재성 (한양대학교 금속재료공학과)
  • Published : 2001.09.01

Abstract

In describing the plastic deformation behaviour of ultrafine-grained materials, a phase mixture model in which a polycrystalline material is regarded as a mixture of a crystalline phase and a grain boundary phase has been successful. The deformation mechanism for the grain boundary phase, which is necessary for applying the phase mixture model to polycrystalline materials, is modelled as a diffusional flow of matter along the grain boundary. A constitutive equation for the boundary diffusion creep of the boundary phase was proposed, in which the strain rate is proportional to (stress/grain siz $e^{2}$). The upper limit of the stress of the boundary phase was set to equal to the strength to the amorphous phase. The proposed model can explain the strain rate and grain size dependence of the strength of the grain boundary phase. Successful applications of the model compared with published experimental data are described.

Keywords

References

  1. Prog. Mater. Sci. v.33 Nanocrystalline Materials Gleiter, H.
  2. J. Electroceramics v.1 Introduction and Overview: Physical Properties of nanocrystalline Materials Chiang, Y-M.
  3. Mechanical Metallurgy Dieter, G. E.
  4. Scripta Metall v.23 On the Validity of the Hall-Petch Relationship in Nanocrystalline Materials Chokshi, A. H.;Rosen, A.;Karch, J.;Gleiter, H.
  5. Scripta Metall. Mater v.24 Grain Growth in Nanocrystalline TiO₂and Its relation to Vickers Hardness and Fracture Toughness Hoefler, H. J.;Averback, R. S.
  6. Processing and Properties of Nanocrystalline Materials Tensile Behaviour of Nanocrystalline Copper Sanders, P. G.;Eastman, J. A.;Weertman, J. R.;Suryanarayana, C.(ed.);Singh, J.(ed.);Froes, F. H.(ed.)
  7. Nanostructured Mater. v.5 A Simple Mictures-based Model for the Grain Size Dependence of Strength in Nanocrystalline Metals Carsley, J. E.;Ning, J.;Milligan, W. W.;Hackney, S. A.;Aifantis, E. C.
  8. Powder Metall. v.41 A Finite Element Analysis of Mechanical Behavior of Nanocrystalline Copper Kim, H. S.;Suryanarayana, C.;Kim, S-J.;Chun, B. S.
  9. J. Kor. Inst. Met. & Mater. v.36 A Composite Model for Hardness of Nanocrystalline Materials Kim, H. S.
  10. Mater. Sci. Eng. v.A276 A Phase Mixture Model of a Particle Reinforced Composite with Fine Microstructure Kim, H. S.;Bush, M. B.;Estrin, Y.
  11. Nanostructured Mater. v.11 The Effect of Grain Size and Porosity on the Elastic Modulus of Nanocrystalline Materials Kim, H. S.;Bush, M. B.
  12. Acta Mater. v.48 Plastic Deformation Behaviour of Fine Grained Materials Kim, H. S.;Estrin, Y.;Bush, M. B.
  13. Unified Constitutive Laws of Plastic Deformation Estrin, Y.;A. S. Krausz(ed.);K. Krausz(ed.)
  14. The Plasticity and Creep of Metals and Ceramics Deformation Mechanism Maps Frost, H. J.;Ashby, M. F.
  15. Scripta Mater. v.42 On the Grain Size Softening in Nanocrystalline Materials Conrad, H.;Narayan, J.
  16. Acta Mater. v.46 Yield Stress of Fine Grained Materials Masumura, R. A.;Hazzledine, P. M.;Pande, C. S.
  17. Scripta Mater. v.37 Compressive Yield Strength of Nanocrystalline Cu and Pd Youngdahl, C. J.;Sanders, P. G.;Eastman, J. A.;Weertman, J. R.
  18. Metall. Mater. Trans. Yang, D.;Conrad, H.