• Title/Summary/Keyword: polycrystalline

Search Result 1,290, Processing Time 0.026 seconds

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles

  • Jung, Oh-Jin;Kim, Sam-Hyeok;Cheong, Kyung-Hoon;Li, W.;Saha, S. Ismat
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.

Fundamentals and Applications of Multi-functional NSOM Technology to Characterization of Nano Structured Materials (다기능 NSOM (mf-NSOM) 을 이용한 나노 구조 재료 분석에 관한 원리와 응용)

  • Lee Woo-Jin;Pyun Su-Il;Smyrl W. H.
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.108-123
    • /
    • 2004
  • Imaging of surfaces and structures by near-field scanning optical microscopy (NSOM) has matured and is routinely used for studies ranging from biology to materials science. Of interest in this review paper is a versatility of modified or multi-functional NSOM (mf-NSOM) to enable high resolution imaging in several modes: (1) Concurrent fluorescence and Topographical Imaging (gases) (2) Microspectroscopy (gases) (3) Concurrent Scanning Electrochemical and Topographical Imaging (SECM) (liquids) (4) Concurrent Photoelectrochemical and Topographical Imaging (PEM) (liquids) The present study will summarize some of the recent advances in mf-NSOM work confirmed and supported by the results from several other imaging techniques of optical, fluorescence, electron and electrochemical microscopy. The studies are directed at providing local information on pitting precursor sites and vulnerable areas on metal and semiconductor surfaces, and at reactive sites on heterogeneous, catalytic substrates, especially on Al 2024 alloy and polycrystalline Ti. In addition, we will introduce some results related to the laser-induced nanometal (Ag) synthesis using mf-NSOM.

The study of Ca $F_2$ films for gate insulator application (게이트 절연막 응용을 위한 Ca $F_2$ 박막연구)

  • 김도영;최유신;최석원;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.239-242
    • /
    • 1998
  • Ca $F_2$ films have superior gate insulator properties than conventional gate insulator such as $SiO_2$, Si $N_{x}$, $SiO_{x}$, and T $a_2$ $O_{5}$ to the side of lattice mismatch between Si substrate and interface trap charge density( $D_{it}$). Therefore, this material is enable to apply Thin Film Transistor(TFT) gate insulator. Most of gate oxide film have exhibited problems on high trap charge density, interface state in corporation with O-H bond created by mobile hydrogen and oxygen atom. This paper performed Ca $F_2$ property evaluation as MIM, MIS device fabrication. Ca $F_2$ films were deposited at the various substrate temperature using a thermal evaporation. Ca $F_2$ films was grown as polycrystalline film and showed grain size variation as a function of substrate temperature and RTA post-annealing treatment. C-V, I-V results exhibit almost low $D_{it}$(1.8$\times$10$^{11}$ $cm^{-1}$ /le $V^{-1}$ ) and higher $E_{br}$ (>0.87MV/cm) than reported that formerly. Structural analysis indicate that low $D_{it}$ and high $E_{br}$ were caused by low lattice mismatch(6%) and crystal growth direction. Ca $F_2$ as a gate insulator of TFT are presented in this paper paperaper

  • PDF

Electrical Characteristics of PZT Thin film Deposited by Rf-magnetron Sputtering as Pb Excess Content of Target (Rf-sputtering법으로 증착한 PZT박막의 타겟의 Pb 함량에 따른 전기적 특성에 관한 연구)

  • Lee, Kyu-Il;Kang, Hyun-Il;Park, Young;Park, Ki-Yub;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.186-189
    • /
    • 2003
  • The role of excess Pb about the crystallization behavior and electrical properties in b(Zr$\sub$0.52/Ti$\sub$0.48/)O3(PZT) thin films has not been precisely defined. In this work, the effect of excess Pb content on the ferroelectric properties of these films was investigated. To analyze the effect, PZT films containing various amounts of excess Pb were Prepared. PZT thin films were deposited on the Pt/Ti bottom electrode by rf magnetron sputtering method and then they were crystallized by rapid thermal annealing (RTA). The experiment showed that all PZT films indicated perovskite polycrystalline structure with preferred orientation (111) and no pyrochlore phase was observed. As higher excess Pb was included, the films showed that value of leakage current shift from 2.03${\times}$10$\^$-6/ to 6.63 ${\times}$ 10$\^$-8/A/cm$^2$ at 100kV/cm, and value of remanent polarization shift from 8.587 ${\mu}$C /cm$^2$ to 4.256 ${\mu}$C/ cm$^2$. Electrical properties of PZT thin film affected by Pb excess content of target were explained to be caused of defect among space charges and defect grain boundaries.

Characterization of length and width of poly-silicon thin film transistors (TFT의 길이와 두께에 관한 특성)

  • Lee, Jeoung-In;Hwang, Sung-Hyun;Jung, Sung-Wook;Jang, Kyung-Soo;Lee, Kwang-Soo;Chung, Ho-Kyoon;Choi, Byoung-Deog;Lee, Ki-Yong;Yi, Jun-Sin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.121-122
    • /
    • 2006
  • Recently, poly-Si TFT-LCD starts to be mass produced using excimer laser annealing (ELA) poly-Si. The main reason for this is the good quality poly-Si and large area uniformity. We report the influence of channel length and width on poly-Si TITs performance. Transfer characteristics of n-channel poly-Si thin film transistors fabricated on polycrystalline silicon (poly-Si) thin film transistors (TFTs) with various channel lengths and widths of $2-30{\mu}m$ has been investigated. In this paper, we analyzed the data of n-type TFTs. We studied threshold voltage ($V_{TH}$), on/off current ratio ($I_{ON}/I_{OFF}$), saturation current (I_{DSAT}$), and transconductance ($g_m$) of n-channel poly-Si thin film transistors with various channel lengths and widths.

  • PDF

The Enhanced Magnetic Transition Temperature in Double Perovskites A2FeMoO6 (A=Ca, Sr and Ba) : Electron Doping Effects

  • Kim J.;Yang H. M.;Lee B. W.
    • Journal of Magnetics
    • /
    • v.10 no.1
    • /
    • pp.10-13
    • /
    • 2005
  • We have studied effects of the partial substitution of $La^{3+}$ for $A^{2+}$ on the magnetic properties of double perovskites $A_2FeMoO_6$ (A=Ca, Sr and Ba). Polycrystalline $A_{2-x}La_xFeMoO_6(0{\leq}x{\leq}0.2)$ samples have been prepared by the conventional solid-state reaction in a stream of 5% $H_2$/Ar gas. The x-ray data indicate that A=Ca is monoclinic with the space group P$2_1$/n, A=Sr is tetragonal with the space group I4/mmm, and A=Ba is cubic with the space group Fm3m. The substitution of $La^{3+}$ for $A^{2+}$ results in a cell volume increase for A=Ca and a cell volume reduction for A=Ba. The decrease of saturation magnetization with increasing x arises from the reduction of magnetic moment associated with the electron doping and the disorder at the Fe and Mo sites. The partial substitution of magnetic $La^{3+}$ for $A^{2+}$ considerably enhances the Curie temperature $T_c$ from 316 K for x = 0 to 334 K for x = 0.2. This enhancement of $T_c$ with $La^{3+}$ doping originates from electron doping effects in addition to ionic size ones.

Thickness Dependence of Low-Field Tunnel-Type Magnetoresistance in$La_{2/3}Sr_{1/3}MnO_3SiO_2/Si(100)$ Thin Films ($La_{2/3}Sr_{1/3}MnO_3SiO_2/Si(100)$ 박막의 저-자장 터널형 자기저항변화의 두께 의존성)

  • 심인보;안성용;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.3
    • /
    • pp.97-103
    • /
    • 2001
  • Polycrystalline thin films of La$_{2}$3/Sr$_{1}$3/MnO$_3$(LSMO) were prepared by water-based sol-gel processing on thermally oxidized Si(100) substrate. The thickness dependence of the low-field tunnel-type magnetoresistance properties at room temperature was studied. Tunnel-type magnetoresistance at low-field is found to be strongly dependent on film thickness. Maximum value of tunnel-type magnetoresistance of LSMO thin films was appeared at the film thickness of ~1500 $\AA$. This behavior can be explained in terms of dead layer between LSMO thin film and Si(100) substrate and thermal lattice strain effect in the LSMO thin films.

  • PDF

Point Defect Engineering Approaches to Enhance the Performance of Thermoelectric Materials (열전소재 성능 증대를 위한 점결함 제어 전략)

  • Kim, Hyun-Sik;Jeong, Hyung Mo;Choi, Soon-Mok;Lee, Kyu Hyoung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.157-161
    • /
    • 2019
  • Independent control of electronic and thermal transport behaviors is one of the most effective approaches to enhance the performance of thermoelectric materials. To address this, many researches on the relationship between defect structures and thermoelectric properties have been carried out since defects are intrinsic ingredients of polycrystalline materials. Recently, experimental results of simultaneously improved electronic and thermal transport properties have been reported via the formation of 0-dimensional point defects. Here, theoretical backgrounds to the engineering of electronic and thermal transport behaviors by the formation of point defects are discussed and related experimental considerations are also presented in order to provide a practical guide for the development of highperformance thermoelectric materials.

The electrical and optical properties of semiconductor CdTe films (반도체 CdTe 박막의 전기 광학적 특성)

  • 박국상;김선옥;이기암
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.1
    • /
    • pp.78-86
    • /
    • 1995
  • Abstract We have investigated the structure and the conductivity of the CdTe films evaporated on the glass substrates by Electron Beam Evaporator (EBE) technique. The structure is observed to be polycrystalline whose phase is mainly hexagonal phase with some cubic phase. Dark electric conductivity is of the order of $1-^{-8} {\Omega}^{-1} cm^{-1}$ and slightly increased by annealing for an hour at $300^{\circ}C$. Activation energy calculated from the electrical conductivity which varies with increasing temperature is 1.446 eV in the case of room temperature substrates. The values of optical band gap are 1.52 eV in direct transition whereas 1.44 eV in indirect. The photoconductivity of the films is of the order of $1-^{-8} {\Omega}^{-1} cm^{-1}$ and the peak energy is about 600 nm in the room temperature. The photoconductivity starts to increase at 850 nm, which is close to 1.446 eV, the activation energy of CdTe polycrystal films.

  • PDF

The structure and the surface composition of semiconductor CdZnTe films by EBE (EBE로 증착된 반도체 CdZnTe 박막의 결정구조와 표면조성)

  • 박국상;김선옥;이기암
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • We have investigated the structure and the conductivity of the $Cd_{1-y}Zn_{y}$ Te films evaporated on the glass substrates (Corning 7059) by Electron Beam Evaporator (EBE) in pressure of approximately $1 {\times} 10^{-6}$ torr.The structure temperatures were held at both room temperature and $300^{\circ}C$, and the samples have annealed for an hour at $300^{\circ}C$ The survace com-position of the as-prepared films were slightly different from those of CdZn Te source material.Cd losses on the CdZnTe surface was measured about 4% of atomic ratio at room temperature substrate, whereas Zn atomic ratio was nearly constant, relatively. The strure is observed to be polycrystalline whose phase is mainly cubic phase. Thermal expansion coefficient was $6.30 {\times} 10^{-5}/^{\circ}C$ which was calculated from the variation of lattice parameter by X-ray powder pat-terns measured at $400^{\circ}C$.Diffraction peaks were slightly increased by annealing for an hour at $300^{\circ}C $, but they werey highly affected by substrate temperature during evaporation.

  • PDF