Browse > Article
http://dx.doi.org/10.5012/bkcs.2003.24.1.049

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles  

Jung, Oh-Jin (School of Environmental Engineering, Chosun University)
Kim, Sam-Hyeok (School of Environmental Engineering, Chosun University)
Cheong, Kyung-Hoon (School of Environmental Engineering, Chosun University)
Li, W. (Department of Materials Science and Engineering, and Physical and Astronomy,University of Delaware)
Saha, S. Ismat (Department of Materials Science and Engineering, and Physical and Astronomy,University of Delaware)
Publication Information
Abstract
TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.
Keywords
TiO₂nanoparticles; Metal ion dopants; MOCVD; Photocatalysis;
Citations & Related Records

Times Cited By Web Of Science : 10  (Related Records In Web of Science)
Times Cited By SCOPUS : 10
연도 인용수 순위
1 Wang, C.-C.; Zhang, Z.; Ying, J. Y. Nano Structured Mater. 1997,9, 583.   DOI   ScienceOn
2 Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Chem. Mater. 1995, 7, 663.   DOI   ScienceOn
3 Ding, Z.; Hu, X.; Lu, G. Q.; Yue, P.-L.; Greenfield, P. F. Langmuir2000, 16, 6216.   DOI   ScienceOn
4 Vidal, A.; Herrero, J.; Romero, M.; Sanchez, B.; Sanchez, M. J.Photochem. Photobiol. A: Chem. 1994, 79, 213.   DOI   ScienceOn
5 Sen, S. K.; Riga, J.; Verbist, J. Chem. Phys. Lett. 1976, 39, 560.   DOI   ScienceOn
6 Jung, O. J. Bull. Korean Chem. Soc. 2001, 22, 1188.
7 Okuyama, K.; Kousaka, Y.; Tohge, N.; Yamamoto, S.; Wu, J. J.;Flagan, R. C.; Seinfeld, J. H. AIChE J. 1986, 32, 2010.   DOI   ScienceOn
8 Palmisano, L.; Augugliaro, V.; Sclafani, A.; Schiavello, M. J.Phys. Chem. 1988, 92, 6710.   DOI   ScienceOn
9 Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, J. Y. J. Phys. Chem.1998, B 102, 10871.
10 Wang, Y.; Cheng, H.; Hao, Y.; Ma, J.; Li, W.; Cai, S. J. Mater. Sci.1999, 34, 3721.   DOI   ScienceOn
11 Fotou, G. P.; Pratsinis, S. E. Chem. Eng. Comm. 1996, 151, 251.   DOI   ScienceOn
12 Rensmo, H.; Keis, K.; Lindstrom, H.; Soedergren, S.; Solbrand,A.; Hagfeldt, A.; Lindquist, S.-E.; Wang, L. N.; Muhammed, M. J.Phys. Chem. 1997, B 101, 2598.
13 Bickley, R. I.; Gonzalez-Carreno, T.; Gonzalez-Elipe, A. R.;Munuera, G.; Palmisano, L. J. Chem. Soc. Faraday Trans. 1994,90, 2257.   DOI   ScienceOn
14 Murata, Y.; Fukuta, S.; Ishikawa, S.; Yokoyama, S. Sol. EnergyMater. Sol. Cells 2000, 62, 157.   DOI   ScienceOn
15 Okuyama, K.; Jeung, J.-T.; Kousaka, Y. Chem. Eng. Sci. 1989, 44,1369.   DOI   ScienceOn
16 Hotchandani, S.; Kamat, P. V. J. Electrochem. Soc. 1992, 139,1630.   DOI
17 Freeware form http://www.ccp14.ac.uk/tutorial/xfit-95/.
18 Kirk-Othmer Encyclopedia of Chemical Technology; Howe-Grant,M., Ed.; John Wiley & Sons, Inc.: 1997; Vol. 24, p 225.
19 Grela, M. A.; Brusa, M. A.; Colussi, A. J. J. Phys. Chem. 1997, B101, 10986.
20 Shannon, R. D. Acta Crystallogr. 1976, A 32, 751.
21 Ismat Shah, S.; Li, W. unpublished.
22 Sclafani, A.; Palmisano, L.; Davi, E. J. Photochem. Photobiol. A:Chem. 1991, 56, 113.   DOI   ScienceOn
23 Shannon, R. D.; Prewitt, C. T. Acta Crystallogr. 1969, B 25, 925.
24 Bedja, I.; Kamat, P. V. J. Phys. Chem. 1995, 99, 9182.   DOI   ScienceOn
25 Nozik, A. J.; Memming, R. J. Phys. Chem. 1996, 100, 13061.   DOI   ScienceOn
26 Akhtar, M. K.; Xiong, Y.; Pratsinis, S. E. AIChE J. 1991, 37, 1561.   DOI
27 Okuyama, K.; Ushio, R.; Kousaka, Y.; Flagan, R. C.; Seinfeld, J.H. AIChE J. 1990, 36, 409.   DOI
28 Beydoun, D.; Amal, R.; Low, G.; McEvoy, S. J. Nanoparticle Res.1999, 1, 439.   DOI   ScienceOn
29 Wang, Y.; Hao, Y.; Cheng, H.; Ma, J.; Xu, B.; Li, W.; Cai, S. J.Mater. Sci. 1999, 34, 2773.   DOI   ScienceOn
30 Handbook of X-ray Photoelectron Spectroscopy; Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E., Eds.; Perkin-Elmer corporation: 1979.
31 Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley:Menlo Park, CA, 1978.
32 Litter, M. I.; Navio, J. A. J. Photochem. Photobiol. A: Chem.1994, 84, 183.   DOI   ScienceOn
33 Choi, W.; Termin, A.; Hoffermann, M. R. J. Phys. Chem. 1994,98, 13669.   DOI   ScienceOn
34 Jung, O. J.; Kim, I. K.; Saha, I. S. (Structure and size distribution of Nd(III) doped $TiO_2$ nanoparticle) Material Science and Engineering B, in press.
35 Bjorksten, U.; Moser, J.; Gratzel, M. Chem. Mater. 1994, 6, 858.   DOI   ScienceOn
36 Sarma, D. D.; Rao, C. N. R. J. Electron Spectrosc. Relate. Phenom.1980, 20, 25.   DOI   ScienceOn
37 Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissortel, F.;Salbeck, J.; Spreitzer, H.; Gratzel, M. Nature 1998, 395, 583.   DOI   ScienceOn