Browse > Article
http://dx.doi.org/10.6117/kmeps.2019.26.4.157

Point Defect Engineering Approaches to Enhance the Performance of Thermoelectric Materials  

Kim, Hyun-Sik (Department of Materials Science and Engineering, Hongik University)
Jeong, Hyung Mo (Department of Materials Science and Engineering, Kangwon National University)
Choi, Soon-Mok (School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
Lee, Kyu Hyoung (Department of Materials Science and Engineering, Yonsei University)
Publication Information
Journal of the Microelectronics and Packaging Society / v.26, no.4, 2019 , pp. 157-161 More about this Journal
Abstract
Independent control of electronic and thermal transport behaviors is one of the most effective approaches to enhance the performance of thermoelectric materials. To address this, many researches on the relationship between defect structures and thermoelectric properties have been carried out since defects are intrinsic ingredients of polycrystalline materials. Recently, experimental results of simultaneously improved electronic and thermal transport properties have been reported via the formation of 0-dimensional point defects. Here, theoretical backgrounds to the engineering of electronic and thermal transport behaviors by the formation of point defects are discussed and related experimental considerations are also presented in order to provide a practical guide for the development of highperformance thermoelectric materials.
Keywords
Thermoelectric; Electronic transport; Thermal transport; Defect structures; Point defect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y.-L. Pei, H. Wu, D. Wu, F. Zheng, and J. He, "High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping", Journal of the American Chemical Society, 136(39), 13902 (2014).   DOI
2 G. J. Snyder, and E. S. Toberer, "Complex Thermoelectric Materials", Nat. Mater., 7(2), 105 (2008).   DOI
3 H.-S. Kim, N. A. Heinz, Z. M. Gibbs, Y. Tang, S. D. Kang, and G. J. Snyder, "High thermoelectric performance in $(Bi_{0.25}Sb_{0.75})_2Te_3$ due to band convergence and improved by carrier concentration control", Mater. Today, 20(8), 452 (2017).   DOI
4 H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, "Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe", Proc. Natl. Acad. Sci., 109(25), 9705 (2012).
5 Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H.-S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder, "Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in $CoSb_3$ skutterudites", Nat. Mater., 14, 1223 (2015).   DOI
6 Y. Pei, H. Wang, and G. J. Snyder, "Band Engineering of Thermoelectric Materials", Adv. Mater., 24(46), 6125 (2012).   DOI
7 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, "Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states", Science, 321, 554 (2008).   DOI
8 Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, and Z. Ren, "Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide", Energy Environ. Sci., 5, 5246 (2012).   DOI
9 C. M. Jaworski, V. Kulbachinskii, and J. P. Heremans, "Resonant level formed by tin in $Bi_2Te_3$ and the enhancement of room-temperature thermoelectric power", Phys. Rev. B., 80, 233201 (2009).   DOI
10 J. Y. Choi, and T. S. Oh, "Thermoelectric Properties of the p-type $(Bi_{0.2}Sb_{0.8})_2Te_3$ with Variation of the Hot-Pressing Temperature", J. Microelectron. Packag. Soc., 18(4), 33 (2001).   DOI
11 D. H. Park, M. R. Roh, M. Y. Kim, and T. S. Oh, "Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing", J. Microelectron. Packag. Soc., 17(2), 49 (2000).
12 S. B. Riffat, and X. Ma, "Improving the coefficient of performance of thermoelectric cooling systems: a review", Int. J. Energy Res., 28(9), 753 (2004).   DOI
13 P. Anandan, M. Omprakash, M. Azhagurajan, M. Arivanandhan, D. Rajan Babu, T. Koyama, and Y. Hayakawa, "Tailoring bismuth telluride nanostructures using a scalable sintering process and their thermoelectric properties", CrystEngComm, 16(34), 7956 (2014).   DOI
14 M. J. Costello, S. Johnson, K. O. Gilliland, C. D. Freel, and W. C. Fowler, "Predicted light scattering from particles observed in human age related nuclear cataracts using mie scattering theory", Invest. Ophthalmol. Vis. Sci., 48, 303 (2007).   DOI
15 J. Callaway, and H. C. von Baeyer, "Effect of Point Imperfections on Lattice Thermal Conductivity", Phys. Rev., 120(4), 1149 (1960).   DOI
16 B. Abeles, "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures", Phys. Rev., 131(5), 1906 (1963).   DOI
17 K. H. Lee, S.-M. Choi, J. W. Roh, S. Hwang, S.-I. Kim, W. H. Shin, H. J. Park, J. H. Lee, S. W. Kim, and D. J. Yang, "Enhanced Thermoelectric Performance of P-Type Bi-Sb-Te Alloys by Codoping with Ga and Ag", J. Electron. Mater., 44(6), 1531 (2015).   DOI
18 G. Meisner, D. Morelli, S. Hu, J. Yang, and C. Uher, "Structure and Lattice Thermal Conductivity of Fractionally Filled Skutterudites: Solid Solutions of Fully Filled and Unfilled End Members", Phys. Rev. Lett., 80(16), 3551 (1998).   DOI
19 B. Yu, M. Zebarjadi, H. Wang, K. Lukas, H. Wang, D. Wang, C. Opeil, M. Dresselhaus, G. Chen, and Z. Ren, "Enhancement of Thermoelectric Properties by Modulation-Doping in Silicon Germanium Alloy Nanocomposites", Nano Lett., 12(4), 2077 (2012).   DOI
20 D. Wu, Y. Pei, Z. Wang, H. Wu, L. Huang, L.-D. Zhao, and J. He, "Significantly Enhanced Thermoelectric Performance in n-type Heterogeneous BiAgSeS Composites", Adv. Funct. Mater., 24(48), 7763 (2014).   DOI