• Title/Summary/Keyword: poly(lactide)

Search Result 250, Processing Time 0.025 seconds

Core-shell Poly(D,L-lactide-co-glycolide )/Poly(ethyl 2-cyanoacrylate) Microparticles with Doxorubicin to Reduce Initial Burst Release

  • Lee, Sang-Hyuk;Baek, Hyon-Ho;Kim, Jung-Hyun;Choi, Sung--Wook
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1010-1014
    • /
    • 2009
  • Monodispersed microparticles with a poly(D,L-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with $1.9\;{\mu}m$ pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to $2.73\;{\mu}m$. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.

Characteristics of Tetanus Toxoid Loaded in Biodegradable Microparticles (파상풍 톡소이드를 함유한 생체분해성 미립구의 특성)

  • 김지윤;김수남;백선영;이명숙;민홍기;홍성화
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.293-299
    • /
    • 2000
  • Biodegradable microspheres made from poly-lactide-co-glycolide polymers have been considered as a new delivery system for single-dose vaccine. Purified tetanus toxoid (TT) was encapsulated in poly-lactide(PLA) and poly-lactide-co-glycolide (PLGA) microparticles using a solvent evaporation method in a multiple emulsion system (water-in oil-in water). The morphology of 77-loaded microparticles was spherical and the suface of them was smooth. The particle size was in a range of 2-10. Protein loading efficiency was 68-97.8%. PLGA (85:15) microparticle showed the highest efficiency. Protein release pattern was influenced by polymer molecular weight and composition. The release rate of PLA(Mw 100,000) microsphere was higher than any other microspheres. In consequence of the hydrolysis of PLGA(50:50) microspheres, environmental pH decreased from 7.4 to 5.0. The PLA, PLGA (75:25) and PLGA (85:15) microshperes showed no significant pH change. The antigenicity or n in microshperes was assayed by indirect sandwich ELISA using equine polyclonal tetanus antitoxin for capture antibody and human polyclonal tetanus antitoxin for primary antibody. The antigenicity of TT in PLA (Mw 100,000), PLGA(50:50, Mw 100,000) and PLGA (75:25, Mw 73,300) after 30 days incubation showed 54, 40.9 and 76.7%, respectively.

  • PDF

생분해성 고분자 합성을 위한 락티드 합성에서 열분해 공정의 개선

  • No, Won-Gyun;Ryu, Hwa-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.622-624
    • /
    • 2003
  • Poly(lactic acid) is a biodegradable themoplastic based on the renewable resources to substitute for petrochemical plastics. Most of PLA is produced by ring opening polymerization from lactide. However, pyrolysis process in the lactide synthesis is expensive, we studied lactide synthetic process for more economical preparation of PLA. In this research was tried to minimize the pyrolysis time, and obtained L-lactide from lactic acid without any catalyst.

  • PDF

A Study on the Interfacial Properties of Bioabsorbable Fibers/PoIy-L-Lactide Composites using Micromechanical Tests and Surface Wettability Measurement (Micromechanical 시험법과 표면 젖음성 측정을 이용한 생흡수성 섬유 강화 Poly-L-Lactide 복합재료의 계면물성 연구)

  • Park, Joung-Man;Kim, Dae-Sik;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.2
    • /
    • pp.17-29
    • /
    • 2002
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites for implant materials were investigated using micromechanical technique and measurement of surface wettability. As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas those of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. Work of adhesion, $W_a$ between bioactive glass fiber and PLLA was the highest, and the wettability results were consistent with the IFSS. Interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

Encapsulation of CdSe/ZnS Quantum Dots in Poly(ethylene glycol)-Poly(D,L-lactide) Micelle for Biomedical Imaging and Detection

  • Lee, Yong-Kyu;Hong, Suk-Min;Kim, Jin-Su;Im, Jeong-Hyuk;Min, Hyun-Su;Subramanyam, Elango;Huh, Kang-Moo;Park, Sung-Woo
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.330-336
    • /
    • 2007
  • Luminescent CdSe/ZnS QDs, with emission in the red region of the spectrum, were synthesized and encapsulated in poly(ethylene glycol)-poly(D,L-lactide) diblock copolymer micelles, to prepare water-soluble, bio-compatible QD micelles. PEG-PLA diblock copolymers were synthesized by ring opening polymerization of D,L-lactide, in the presence of methoxy PEG as a macro initiator. QDs were encapsulated with PEG-PLA polymers using a solid dispersion method in chloroform. The resultant polymer micelles, with encapsulated QDs, were characterized using various analytical techniques, such as UV- Vis measurement, light scattering, fluorescence spectroscopy, transmission electron microscopy (TEM) and atomic forced microscopy (AFM). The polymer micelles, with encapsulated QDs, were spherical and showed diameters in the range of 20-150 nm. The encapsulated QDs were highly luminescent, and have high potential for applications in biomedical imaging and detection.

Effect of Composition and Synthetic Route on the Microstructure of Biodegradable Diblock Copolymer, Poly($\varepsilon$-caprolactone-co-L-lactide)-b-Poly(ethylene glycol)

  • Min, Youn-Jin;Lee, Seong-Nam;Park, Jung-Ki;Cho, Kuk-Young;Sung, Shi-Joon
    • Macromolecular Research
    • /
    • v.16 no.3
    • /
    • pp.231-237
    • /
    • 2008
  • Biodegradable poly($\varepsilon$-caprolactone-co-L-lactide)-b-poly(ethylene glycol) (PCLA-b-PEG) copolymers were synthesized via solution polymerization by varying the feed composition of $\varepsilon$-caprolactone ($\varepsilon$-CL) and L-lactide (LLA) ($\varepsilon$-CL: LLA= 10:0, 7:3, 5:5, 3:7, 0: 10). The feed ratio based on weight is in accordance with the copolymer composition except for the case of $\varepsilon$-CL: LLA=3:7 (C3L7), which was verified by $^1H$-NMR. Two different approaches were used for the exceptional case, which is an extension of the reaction time or the sequential introduction of the monomer. A copolymer composition of $\varepsilon$-CL: LLA=3:7 could be obtained in either case. The chemical microstructure of PCLA-b-PEG was determined using the $^{13}C$-NMR spectra and the effect of the sequential structure on the thermal properties and crystallinity were examined. Despite the same composition ratio of the copolymer, the microstructure can differ according to the reaction conditions.

Introduction of Specific Interaction of Hydroxyapatite/Polylactide Composites (수산화인회석과 폴리락타이드 복합체에서 상호작용력의 도입)

  • Kang, Jin-Kyu;Lim, Jun-Heok;Moon, Myong-Jun;Lee, Won-Ki;Kim, Mi-Ra;Lee, Jin-Kook
    • Polymer(Korea)
    • /
    • v.33 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • To increase mechanical properties of the hydroxyapatite/poly (L-lactide) (HA/PLLA) composite which was a potential bone substitute material, HA was modified by the surface grafting with D-lactide (DLA) and the formation of stereocomplexes between components was introduced. The composite films were prepared by the solvent-nonsolvent technique to minimize the precipitation of HA during drying. The structure and properties of the composites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimeter, and scanning electron microscopy, and mechanical property measurements. TGA results showed that the amount of DLA grafted on the HA surfaces (g-HA) was 6 wt%. The obtained g-HA exhibited better dispersity in an organic solvent than HA. The formation of stereocomplexes in the composites was confirmed by the change in melting temperature. The mechanical properties of g-HA/PLLA composites were increased, compared to the HA/PLLA composites.

Norfloxacin Release from Surfactant-Free Nanoparticles of Poly(DL-lactide-co-glycolide) and Biodegradation (계면활성제를 사용하지 않는 Poly(DL-lactide-co-glycolide) 나노입자로부터의 Norfloxacin 방출과 생분해 특성)

  • 권중근;정영일;장미경;이창형;나재운
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.535-542
    • /
    • 2002
  • We have prepared the surfactant-free nanoparticles of poly(DL-lactide-co-glycolide) (PLGA) by dialysis method and their physicochemical properties such as particle size and drug contents were investigated against various solvent. The size of PLGA nanoparticles prepared by using dimethylacetamide (DMAc), dimethylformamide (DMF), and dimethylsulfoxide (DMSO) was smaller than that from acetone. Also, the order of drug contents was DMAc>DMF>DMSO=acetone. These phenomena could be expected from the fact that solvent affects the size of nanoparticles and drug contents. The PLGA nanoparticles have a good spherical shapes as observed from scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Also, surfactant-free nanoparticles entrapping norfloxacin (NFx) have a good drug loading capacity without free-drug on the surface of nanoparticles confirmed by the analysis of X-ray powder diffraction. Release kinetics of NFx used as a model drug was governed not only by drug contents but also by particle size. Also, the biodegradation rate of PLGA nanoparticles prepared from DMF was faster than that prepared from acetone, indicating that the biodegradation of PLGA nanoparticles is size-dependent.

Microfailure Degradation Mechanisms and Interfacial Properties of Bioabsorbable Composites for Implant Materials using Micromechanical Technique and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Implant용 Bioabsorbable 복합재료의 미세파괴 분해메커니즘과 계면물성)

  • 박종만;김대식
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.15-26
    • /
    • 2001
  • Interfacial properties and microfailure degradation mechanisms of the bioabsorbable composites fur implant materials were investigated using micromechanical technique and nondestructive acoustic emission (AE). As hydrolysis time increased, the tensile strength, the modulus and the elongation of poly(ester-amide) (PEA) and bioactive glass fibers decreased, whereas these of chitosan fiber almost did not change. Interfacial shear strength (IFSS) between bioactive glass fiber and poly-L-lactide (PLLA) was much higher than PEA or chitosan fiber/PLLA systems using dual matrix composite (DMC) specimen. The decreasing rate of IFSS was the fastest in bioactive glass fiber/PLLA composites whereas that of chitosan fiber/PLLA composites was the slowest. AE amplitude and AE energy of PEA fiber decreased gradually, and their distributions became narrower than those in the initial state with hydrolysis time. In case of bioactive glass fiber, AE amplitude and AE energy in tensile failure were much higher than in compression. In addition, AE parameters at the initial state were much higher than those after degradation under both tensile and compressive tests. In this work, interfacial properties and microfailure degradation mechanisms can be important factors to control bioabsorbable composite performance.

  • PDF

Effect of Collector Temperature on the Porous Structure of Electrospun Fibers

  • Kim Chi Hun;Jung Yoon Ho;Kim Hak Yong;Lee Douk Rae;Dharmaraj Nallasamy;Choi Kyung Eun
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.59-65
    • /
    • 2006
  • We report a new approach to fabricate electrospun polymer nonwoven mats with porous surface morphology by varying the collector temperature during electrospinning. Polymers such as poly(L-lactide) (PLLA), polystyrene (PS), and poly(vinyl acetate) (PVAc) were dissolved in volatile solvents, namely methylene chloride (Me) and tetrahydrofuran (THF), and subjected to electrospinning. The temperature of the collector in the electrospinning device was varied by a heating system. The resulting nonwoven mats were characterized by using scanning electron microscopy (SEM), field emission SEM (FESEM), and atomic force microscopy (AFM). We observed that the surface morphology, porous structure, and the properties such as pore size, depth, shape, and distribution of the nonwoven mats were greatly influenced by the collector temperature.