Effect of Composition and Synthetic Route on the Microstructure of Biodegradable Diblock Copolymer, Poly($\varepsilon$-caprolactone-co-L-lactide)-b-Poly(ethylene glycol)

  • Min, Youn-Jin (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Seong-Nam (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Jung-Ki (Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Cho, Kuk-Young (Division of Advanced Materials Engineering, Kongju National University) ;
  • Sung, Shi-Joon (Display and Nano Devices Laboratory, Daegu Gyeongbuk Institute of Science and Technology)
  • Published : 2008.04.30

Abstract

Biodegradable poly($\varepsilon$-caprolactone-co-L-lactide)-b-poly(ethylene glycol) (PCLA-b-PEG) copolymers were synthesized via solution polymerization by varying the feed composition of $\varepsilon$-caprolactone ($\varepsilon$-CL) and L-lactide (LLA) ($\varepsilon$-CL: LLA= 10:0, 7:3, 5:5, 3:7, 0: 10). The feed ratio based on weight is in accordance with the copolymer composition except for the case of $\varepsilon$-CL: LLA=3:7 (C3L7), which was verified by $^1H$-NMR. Two different approaches were used for the exceptional case, which is an extension of the reaction time or the sequential introduction of the monomer. A copolymer composition of $\varepsilon$-CL: LLA=3:7 could be obtained in either case. The chemical microstructure of PCLA-b-PEG was determined using the $^{13}C$-NMR spectra and the effect of the sequential structure on the thermal properties and crystallinity were examined. Despite the same composition ratio of the copolymer, the microstructure can differ according to the reaction conditions.

Keywords

References

  1. R. Langer, Nature(Supp), 392, 5 (1998)
  2. S. Dumitriu, Polymeric Biomaterials, 2nd edition, Marcel Dekker, New York, 2001, Ch. 4
  3. A. Gspferich, Biomaterials, 17, 103 (1996) https://doi.org/10.1016/0142-9612(96)85755-3
  4. K. E. Uhrich, S. M. Cannizarro, R. S. Langer, and K. M. Shakesheff, Chem. Rev., 99, 3181 (1999) https://doi.org/10.1021/cr940351u
  5. J. E. Bergsma, F. R. Rozema, R. R. M. Bos, G. Boering, W. C. de Bruijn, and A. J. Pennings, Biomaterials, 16, 267 (1995) https://doi.org/10.1016/0142-9612(95)93253-A
  6. C. H. Kim, K. Y. Cho, E. J. Choi, and J. K. Park, J. Appl. Polym. Sci., 77, 226 (2000) https://doi.org/10.1002/(SICI)1097-4628(20000705)77:1<226::AID-APP29>3.0.CO;2-8
  7. N. S. Choi, C. H. Kim, K. Y. Cho, and J. K. Park, J. Appl. Polym. Sci., 86, 1892 (2002) https://doi.org/10.1002/app.11134
  8. C. G. Pitt, F. I. Chasalow, Y. M. Hibionada, D. M. Klimas, and A. Schindler, J. Appl. Polym. Sci., 26, 3779 (1981) https://doi.org/10.1002/app.1981.070261124
  9. M. Yasin and B. J. Tighe, Biomaterials, 13, 9 (1992) https://doi.org/10.1016/0142-9612(92)90087-5
  10. K. Y. Cho, C. H. Kim, J. W. Lee, and J. K. Park, Macromol. Rapid Commun., 20, 598 (1999) https://doi.org/10.1002/(SICI)1521-3927(19991101)20:11<598::AID-MARC598>3.0.CO;2-1
  11. K. Y. Cho and J. K. Park, Polym. Bull., 57, 849 (2006) https://doi.org/10.1007/s00289-006-0658-4
  12. K. J. Zhu, X. Z. Lin, and S. L. Yang, J. Appl. Polym. Sci., 39, 1 (1990) https://doi.org/10.1002/app.1990.070390101
  13. K. S. Kim, S. Chung, I. J. Chin, M. N. Kim, and J. S. Yoon, J. Appl. Polym. Sci., 72, 341 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990418)72:3<341::AID-APP4>3.0.CO;2-D
  14. K. Y. Cho, S. H. Choi, C. H. Kim, Y. S. Nam, T. G. Park, and J. K. Park, J. Control. Release, 76, 275 (2001) https://doi.org/10.1016/S0168-3659(01)00442-4
  15. A. Gspferich, S. J. Peter, A. Lucke, L. Lu, and A. G. Mikos, J. Biomed. Mater. Res., 46, 390 (1999) https://doi.org/10.1002/(SICI)1097-4636(19990905)46:3<390::AID-JBM12>3.0.CO;2-N
  16. G. S. Kwon and K. Kataoka, Adv. Drug Deliver. Rev., 16, 295 (1995) https://doi.org/10.1016/0169-409X(95)00031-2
  17. M. Iijima, Y. Nagasaki, T. Okada, M. Kato, and K. Kataoka, Macromolecules, 32, 1140 (1999) https://doi.org/10.1021/ma9815962
  18. R. Gref, Y. Minamitake, M. T. Peracchia, V. Trubetskov, V. Torchilin, and R. Langer, Science, 263, 1600 (1994) https://doi.org/10.1126/science.8128245
  19. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Nature, 388, 860 (1997) https://doi.org/10.1038/42218
  20. S. J. Im, Y. M. Choi, E. Subramanyam, and K. M. Huh, Macromol. Res., 15, 363 (2007) https://doi.org/10.1007/BF03218800
  21. Y. J. Min, K. Y. Cho, and J. K. Park, Proceedings of 29th Annual Meeting of the Controlled Release Society, Seoul, Korea, July 20-25, 2002, p1144
  22. H. Cho, D. Chung, and J. An, Biomaterials, 25, 3733 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.106
  23. Y. Zhang, C. Wang, W. Yang, B. Shi, and S. Fu, Colloid Polym. Sci., 283, 1246 (2005) https://doi.org/10.1007/s00396-005-1306-5
  24. R. R. Pal and D. S. Lee, Macromol. Res., 13, 373 (2005) https://doi.org/10.1007/BF03218469
  25. W. S. Shim, J. H. Kim, H. Park, K. Kim, I. C. Kwon, and D. S. Lee, Biomaterials, 27, 5178 (2006) https://doi.org/10.1016/j.biomaterials.2006.05.038
  26. W. P. Ye, F. S. Du, W. H. Jin, J. Y. Yang, and Y. Xu, React. Funct. Polym., 32, 161 (1997) https://doi.org/10.1016/S1381-5148(96)00081-8
  27. M. Malin, M. Hiljanen-Vainio, T. Karjalainen, and J. SeppSla, J. Appl. Polym. Sci., 59, 1289 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960222)59:8<1289::AID-APP12>3.0.CO;2-1
  28. J. Mohammadi-Rovshandeh, S. M. F. Farnia, and M. N. Sarbolouki, J. Appl. Polym. Sci., 83, 2072 (2002) https://doi.org/10.1002/app.10145
  29. M. S. Huang, S. Li, J. Coudane, and M. Vert, Macromol. Chem. Phys., 204, 1994 (2003) https://doi.org/10.1002/macp.200350054
  30. D. W. Grijpma and A. J. Pennings, Polym. Bull., 25, 335 (1991) https://doi.org/10.1007/BF00316903
  31. J. Kasperczyk and M. Bero, Makromol. Chem., 192, 1777 (1991) https://doi.org/10.1002/macp.1991.021920812
  32. E. J. Choi, J. K. Park, and H. N. Chang, J. Polym. Sci. Polym. Phys., 32, 2481 (1994) https://doi.org/10.1002/polb.1994.090321505
  33. T. Fujiwara, M. Miyamoto, Y. Kimura, and S. Sakurai, Polymer, 42, 1515 (2001) https://doi.org/10.1016/S0032-3861(00)00454-7