Browse > Article

Core-shell Poly(D,L-lactide-co-glycolide )/Poly(ethyl 2-cyanoacrylate) Microparticles with Doxorubicin to Reduce Initial Burst Release  

Lee, Sang-Hyuk (Nanosphere Process & Technology Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University)
Baek, Hyon-Ho (Nanosphere Process & Technology Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Jung-Hyun (Nanosphere Process & Technology Laboratory, Department of Chemical and Biomolecular Engineering, Yonsei University)
Choi, Sung--Wook (Department of Biomedical Engineering, Washington University in St. Louis)
Publication Information
Macromolecular Research / v.17, no.12, 2009 , pp. 1010-1014 More about this Journal
Abstract
Monodispersed microparticles with a poly(D,L-lactide-co-glycolide) (PLGA) core and a poly(ethyl 2-cyanoacrylate) (PE2CA) shell were prepared by Shirasu porous glass (SPG) membrane emulsification to reduce the initial burst release of doxorubicin (DOX). Solution mixtures with different weight ratios of PLGA polymer and E2CA monomer were permeated under pressure through an SPG membrane with $1.9\;{\mu}m$ pore size into a continuous water phase with sodium lauryl sulfate as a surfactant. Core-shell structured microparticles were formed by the mechanism of anionic interfacial polymerization of E2CA and precipitation of both polymers. The average diameter of the resulting microparticles with various PLGA:E2CA ratios ranged from 1.42 to $2.73\;{\mu}m$. The morphology and core-shell structure of the microparticles were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The DOX release profiles revealed that the microparticles with an equivalent PLGA:E2CA weight ratio of 1:1 exhibited the optimal condition to reduce the initial burst of DOX. The initial release rate of DOX was dependent on the PLGA:E2CA ratio, and was minimized at a 1:1 ratio.
Keywords
core-shell; poly(D,L-lactide-co-glycolide); ethyl 2-cyanoacrylate; membrane emulsification; doxorubicin;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 M. O. Omelczuk and J. W. McGinity, Pharm. Res., 9, 26 (1992)   DOI   ScienceOn
2 K. J. Pekarek, J. S. Jacob, and E. Mathiowitz, Mater. Res. Soc. Symp. Proc., 331, 97 (1994)
3 A. Kishida, K. Murakami, H. Goto, M. Akashi, H. Kubita, and T. Endo, J. Bioact. Compat. Polym., 13, 270 (1998)   DOI
4 K. Shiga, N. Muramatsu, and T. Kondo, J. Pharm. Pharmacol., 48, 891 (2002)
5 C. Y. Huang and Y. D. Lee, Int. J. Pharm., 325, 132 (2006)   DOI   PUBMED   ScienceOn
6 C. O’Sullivan and C. Birkinshaw, Polym. Degrad. Stabil., 78, 7 (2002)   DOI   ScienceOn
7 L. Y. Chu, R. Xie, J. H. Zhu, W. M. Chen, T. Yamaguchi, and S. I. Nakao, J. Colloid Interf. Sci., 265, 187 (2003)   DOI   ScienceOn
8 S. W. Choi, H. Y. Kwon, W. S. Kim, and J. H. Kim, Colloid Surface A, 201, 283 (2002)   DOI   ScienceOn
9 J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook, 4th edition, Vol. 1, p. 708
10 H. Okada, M. Miyamoto, T. Heya, Y. Inoue, S. Kamei, Y. Ogawa, and H. Taguchi, J. Control. Release, 28, 121 (1994)   DOI   ScienceOn
11 A. Bootz, T. Russ, F. Gores, M. Karas, and J. Kreuter, Eur. J. Pharm. Biopharm., 60, 391 (2005)   DOI   ScienceOn
12 W. R. Vezin and A. T. Florence, J. Biomed. Mater. Res., 14, 93 (1980)   DOI   ScienceOn
13 R. Bodmeier and J. W. McGinity, Pharm. Res., 4, 465 (1987)   DOI   ScienceOn
14 R. Jalil and J. R. Nixon, J. Microencap., 7, 297 (1990)   DOI
15 S. Gibaud, C. Rousseau, C. Weingarten, R. Favier, L. Douay, J. Andreux, and P. Couvreur, J. Control. Release, 52, 131 (1998)   DOI   ScienceOn
16 R. H. Müller, C. Lherm, J. Herbort, T. Blunk, and P. Couvreur, Int. J. Pharm., 84, 1 (1992)   DOI   ScienceOn
17 K. A. Athanasiou, G. G. Niederauer, and C. M. Agrawal, Biomaterials, 17, 93 (1996)   DOI   ScienceOn
18 L. Y. Chu, S. H. Park, T. Yamaguchi, and S. I. Nakao, Langmuir, 18, 1856 (2002)   DOI   ScienceOn
19 N. Behan, C. Birkinshaw, and N. Clarke, Biomaterials, 22, 1335 (2001)   DOI   ScienceOn
20 S. Omi, T. Senba, M. Nagai, and G.-H. Ma, J. Appl. Polym. Sci., 79, 2200 (2001)   DOI   ScienceOn
21 V. Lenaerts, P. Couvreur, D. Christiaens-Leyh, E. Joiris, M. Roland, B. Rollman, and P. Speiser, Biomaterials, 5, 65 (1984)   DOI   ScienceOn
22 B. S. Zolnik and D. J. Burgess, J. Control. Release, 122, 338 (2007)   DOI   ScienceOn
23 M. E. Page-Clisson, H. Pinto-Alphandary, M. Ourevitch, A. Andremont, and P. Couvreur, J. Control. Release, 56, 23 (1998)   DOI   ScienceOn
24 K. Juni, J. Ogata, M. Nakano, T. Ichihara, K. Mori, and M. Akagi, Chem. Pharm. Bull., 33, 313 (1985)   DOI   PUBMED   ScienceOn
25 R. Bodmeier and H. Chen, J. Pharm. Pharmacol., 40, 754 (1988)   DOI
26 D. Scherer, J. R. Robinson, and J. Kreuter, Int. J. Pharm., 101, 165 (1994)   DOI   ScienceOn
27 S. S. Shah, Y. Cha, and C. G. Pitt, J. Control. Release, 38, 261 (1992)
28 F. Leonard, R. K. Kulkarni, G. Brandes, J. Nelson, and J. J. Cameron, J. Appl. Polym. Sci., 10, 259 (1966)   DOI
29 J. M. Ruiz, B. Tissier, and J. P. Benoit, Int. J. Pharm., 49, 69 (1989)   DOI   ScienceOn
30 D. L. Wise, G. J. McCormick, G. P. Willet, and L. C. Anderson, Life Sci., 19, 867 (1976)   DOI   ScienceOn
31 C. O’Sullivan and C. Birkinshaw, Biomaterials, 25, 4375 (2004)   DOI   ScienceOn