• Title/Summary/Keyword: polluted soil

Search Result 268, Processing Time 0.026 seconds

A Study on Optimal Conditions for Washing the Heavy Metal Polluted Soil in Ka-hak Mine (가학광산 중금속 오염토양의 세척 최적조건 연구)

  • Kim, Teayoup;Park, Jayhyun;Park, Juhyun
    • Journal of the Korean Society of Mineral and Energy Resources Engineers
    • /
    • v.55 no.6
    • /
    • pp.517-526
    • /
    • 2018
  • In order to remove pollutants from the soil in the Ka-hak mine site, this study investigates optimization of the acid washing conditions for the soil. The soil at the site is presumed to be contaminated by diffused heavy-metal-contaminated tailings. The major heavy metal pollutants in the soil are copper, lead, and zinc. Gravels larger than 5mm in size constitute approximately 38% of the soil, and these are the least polluted by heavy metals. On the other hand, it is difficult to reduce the concentration of heavy metals in fine soils, particularly those whose sizes are less than 0.075 mm. The results of the continuous process using a hydro-cyclone show that fine soil particles consisting of at least 20% of the raw soil must be separated before the chemical soil washing process in order to achieve reliable cleaning.

Water Deficit of Pitch Pines Caused by Superficial Rooting and Air Pollutants in Seoul and Its Vicinity

  • Joon-Ho kim;Rhyu, Tae-Cheol
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.309-316
    • /
    • 1994
  • To make regional comparisons of water status of pitch pine, the temporal changes of water status in pitch pine were investigated at different areas; urban Seoul (heavily polluted area), surburb of Seoul (lightly polluted area), and rural area (control). The effects of air pollutants, acid rain and chemical properties of soil on water deficit in pitch pine were also investiaged. Water content of needles growing at polluted areas were usually lower than that at unpolluted area. Water saturation deficit of needles growing at polluted areas were usually higher than that at unpolluted area especially in dry season. These results indicated that water in needles growing at polluted areas were usually more deficient than that at unpolluted area, and were more deficient in April than other months. At polluted areas, the older the needles were, the more quickly transpirated the water in the needle was. At unpolluted areas, however, water in old needles was not so quickly transpirated as those at polluted areas. Water potential of needles of pitch pine seedlings treated with simulated acid rain (SAR) of pH 3.5 decreased more quickly than that of needles treated with SAR of pH 5.6. Loss of water through epicuticular layer was greater in the following order: magnesium deficiency+100 $\mu$M aluminium>100$\mu$M aluminium>magnesium deficiency>control. In addition to Mg deficiency and Al toxicity, growth decline of pitch pine widely occurring in polluated Seoul could to a large extent be due to cuticle degredation and abnormal vertical distribution of fine roots, which lead to water stress, particularly in dry seasons.

  • PDF

The Liability on the Damage of Soil Pollution (토양오염의 피해에 대한 책임)

  • Cho, Eun-Rae
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.6
    • /
    • pp.1-9
    • /
    • 2005
  • Soil is polluted by an agricultural chemicals, the effluence of a crystal and sewage sludge, illegal discharging of waste water or waste matter and so on. Soil pollution that accompanies a groundwater and the crops contamination has a large effect on people's living. By polluters pay principle, when a soil was polluted, polluters take the responsibility of clean-up and compensation for damages. The character of the responsibility is a strict liability. When joint polluters exist in a soil pollution, they bear collective responsibility. But they are exempted from obligation in case of a natural calamity and war. The polluters who are poor contribution of pollution take a partition responsibility but it is not easy to prove that. The concerned parties of purification liability in a soil pollution are polluter, an owner or occupant of a contaminated site, and a grantee. But when we do not appoint the polluter or he cannot do a cleanup, municipal must put in effect the purification. In such a case, another parties who are related to the contamination should take upon themselves a liability. The province of responsible parties, therefore, is required to extend to an owner or operator of a facility, a carrier and lender.

Physico-Chemical Properties of the Recycled Waste Soils from Construction Site as Planting Soil (건설폐토석의 식생용토로서의 이화학적 특성)

  • Kim, Won-Tae;Yoon, Yong-Han;Park, Bong-Ju
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.5
    • /
    • pp.31-39
    • /
    • 2007
  • This study was carried out to evaluation the recycled waste soils from construction site for planting soil. For this purpose, the concentrations of polluted materials and the physico-chemical properties were measured at recycled soil samples of an industrial waste treating company in the Metropolitan landfill area. The concentrations of polluted materials did not exceed to the standard critical levels of soil pollution in all analyzed items. The measures of the samples soil texture (loamy sand), bulk density (1.09~1.32g/$cm^3$), saturated hydraulic conductivity ($1.6{\times}10^{-3}{\sim}1.8{\times}10^{-3}$cm/sec), solid phase distribution (0.4~0.5$m^3/m^3$), porosity (0.5~0.6$m^3/m^3$), Ex. $K^+$ (1.0~1.2cmol/kg), Ex. $Mg^{2+}$ (0.2~0.6cmol/kg) were identified as not worse than those of conventional planting soil. But the sample soils have serious problems for planting soil such as high levels of pH (9.6~11.5), EC (0.78~1.84ds/m) and Ex. $Ca^{2+}$ (25.6~34.5cmol/kg), low level of organic matter (0.2~0.3%). It is required to improve pH, EC and Ex. $Ca^{2+}$ of sample soils. Consequently, the results suggested a high potential of recycling of the wastes soils for planting soil.

Immobilization of Arsenic in Tailing by Fenton-like reaction (펜톤유사반응을 이용한 광미중에 비소의 불용화)

  • 정익재;최용수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.127-130
    • /
    • 2002
  • Recently, the contamination with heavy metals in closed mines has been seriously considered since it can disturb human health through the polluted drinking-water and crops. Therefore, the concerns about the remediation of polluted land and treatment technology for hazardous matters have been accelerated. However, any of practical methods for treatment and/or remediation have not been yet suggested. In this research, a novel technology was studied to immobilize arsenic in tailings and soils disturbed by mining. In this technology, Fenton-like reaction were applied to immobilize arsenic in tailings. In the examination of Fenton-like reaction using pure pyrite, $H_2O$$_2$ and arsenic, the concentrations of extracted arsenic and iron were reduced up to 90 and 75%, respectively From the result of SEM-EDS, the Immobilization of arsenic was observed on the surface of pyrite. Thus, it can be said that the coating and/or adsorption prevents the extraction of arsenic.

  • PDF

A Study on the Solidification of Heavy Metal Ion by Phosphate Magnesia Cement (인산염 마그네시아 시멘트에 의한 중금속 이온 고정화에 관한 연구)

  • Choi, Hun;Choi, Jung-Ok;Kang, Hyun-Ju;Song, Myong-Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.321-322
    • /
    • 2009
  • when the polluted soil with heavy metal ions was solidified using magnesia-phosphate cement, heavy metal ions were rarely eluted. Furthermore, the results cf SEM-EDS analysis showed that heavy metal ions in polluted soil turns into insoluble solid solution by magnesia-phosphate cement, it come to have the effect to stabilize heavy metals.

  • PDF

혼합 균주의 유류 분해 특성에 관한 호흡율 연구

  • 목지예;류두현;유병수;유지선;박준석;안병구
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.323-326
    • /
    • 2002
  • Oxygen uptake characteristics of soil microcosm added by hydrocarbon degrading bacteria screened from polluted site in Korea was studied. The degradation of TPH was enhanced by additon of nononionic surfactants. The amount of oxygen consumed was decreased at higher concentration. The degradation rate of hydrocarbon was decreased by increasing the hydrcarbon concentration.

  • PDF

ACC Deaminase Producing Arsenic Tolerant Bacterial Effect on Mitigation of Stress Ethylene Emission in Maize Grown in an Arsenic Polluted Soil

  • Shagol, Charlotte C.;Subramanian, Parthiban;Krishnamoorthy, Ramasamy;Kim, Kiyoon;Lee, Youngwook;Kwak, Chaemin;Sundaram, Suppiah;Shin, Wansik;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.213-216
    • /
    • 2014
  • Arsenic is a known hazardous metalloid not only to the animals but also to plants. With high concentrations, it can impede normal plant growth and cause even death of plants at extremely high levels. A known plant response to stress conditions such as toxic levels of metal (loids) is the production of stress ethylene, causing inhibitory effect on root growth in plants. When the effect of various arsenic concentrations was tested to maize plant, the stress ethylene emission proportionately increased with increasing concentration of As(V). The inoculation of two arsenic tolerant bacteria; Pseudomonas grimonti JS126 and Pseudomonas taiwanensis JS238 having respective high and low 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity reduced stress ethylene emission by 59% and 30% in maize grown in arsenic polluted soils. The result suggested the possible use of Pseudomonas grimonti JS126 for phytoremediation of arsenic polluted soils.

Selection of Tolerant Species among Korean Major Woody Plants to Restore Yeocheon Industrial Complex Area (여천공업단지의 복원을 위한 우리나라 주요 목본식물 중 내성종의 선발)

  • 유영한;이창석;김준호
    • The Korean Journal of Ecology
    • /
    • v.21 no.4
    • /
    • pp.337-344
    • /
    • 1998
  • To select tolerant species among the Korean major woody plants for restoring disturbed ecosystems by air and soil pollution, we transplanted the seedlings of 56 species in control and polluted sites within Yeocheon industrial complex area, and compared their aboveground growth characteristics such as total branch length, total leaf weight, and maximum photozynthetic rate. Tolerant species growting better in polluted site than in control site was Quercus variabilis, Pinus thunbergii, Q. aliena, P. densiflora, Styrax japonica, Alnus firma, Celtis sinensis, Elaeagnus umbellata, Q. serrata, japonica, Sorbus alnifolia, and Q. acutissimia in local tree occuring within polluted area group (80%), Ailanthus altissima in street tree group (20%), Populus tomentiglandulosa and A. hirsuta var. sibirica in fast growing tree group (50%), Acer ginala and Abies holophylla in late successional tree group (20%), Betulla platyphylla var. japonica, Acer truncatum, A. palmatum, Syringa dilatata, and Rosa multifora in garden tree group (38%), and Q. rubura, and Robinia pseudoacacia in foreign restoring tree group (20%), respectively. The remaining plant species, 37 species (57% of total species), were classified into sensitive species to pollution. Those tolerant species can be utilized for restoration of the degraded ecosystem in this polluted area.

  • PDF

A Survey of Soil Pollution in Pusan City Area (부산시 일원의 토양 오염도 조사)

  • Chung, In-Kyo;Hong, Seong-Soo;Yun, Il
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.725-732
    • /
    • 1994
  • To provide a basis for setting up an environmental pollution policy of Pusan, an investigation of metal contents in the soil of Pusan was carried out from May, 1993 to April, 1994. Soil was sampled from 10 sites of industrial area,8 sites of commercial area, 8 sites of residential area, 8 sites of green area and 8 sites of agricultural area. The industrial area was the most heavily polluted and the average contents of Cd, Cu, Zn, Mn, Pb and As were 0.580, 19.377, 67.348, 59.638, 58.555 and 1.006 ppm, respectively. In the soil of commercial area, the average contents of Cd, Cu, Zn, Mn, Pb and As were 0.453, 19.110, 63.384, 56.006, 37.466 and 0.578 ppm, respectively, and the average contents of Cd, Cu, Zn, Mn, Pb and As were 0.289, 10.312, 55.246, 55.536, 17.695 and 0.610 ppm, respectively, in the soil of residential area. The green area was the least polluted and the average contents of Cd, Cu, Zn, Mn, Pb and As were 0.215, 5.949, 19.366, 37.244, 6.856 and 0.295 ppm, respectively. In the soil of agricultural area, the average contents of Cd, Cu, Zn, Mn, Pb and As were 0.160, 7.077, 25.365, 51.485, 10.607 and 0.499 ppm, respectively The fact that the Cd content of agricultural area was lower than that of green area is remarkable.

  • PDF