DOI QR코드

DOI QR Code

A Study on Optimal Conditions for Washing the Heavy Metal Polluted Soil in Ka-hak Mine

가학광산 중금속 오염토양의 세척 최적조건 연구

  • 김대엽 (한국광해관리공단 기술연구센터) ;
  • 박제현 (한국광해관리공단 기술연구센터) ;
  • 박주현 (한국광해관리공단 기술연구센터)
  • Received : 2018.11.26
  • Accepted : 2018.12.20
  • Published : 2018.12.31

Abstract

In order to remove pollutants from the soil in the Ka-hak mine site, this study investigates optimization of the acid washing conditions for the soil. The soil at the site is presumed to be contaminated by diffused heavy-metal-contaminated tailings. The major heavy metal pollutants in the soil are copper, lead, and zinc. Gravels larger than 5mm in size constitute approximately 38% of the soil, and these are the least polluted by heavy metals. On the other hand, it is difficult to reduce the concentration of heavy metals in fine soils, particularly those whose sizes are less than 0.075 mm. The results of the continuous process using a hydro-cyclone show that fine soil particles consisting of at least 20% of the raw soil must be separated before the chemical soil washing process in order to achieve reliable cleaning.

본 연구는 가학광산 오염토양 정화를 위해 토양 세척 최적조건을 수립하는데 목적이 있다. 연구지역 내 토양은 다양한 중금속에 의해 오염되어 있는데 특히 구리, 납, 아연의 농도가 높게 나타난다. 염산을 활용한 세척실험 결과 1 M의 농도로 30분 세척 시 중금속의 제거 효과가 가장 좋게 나타났다. 전체 토양의 38%는 1.18 mm 이상의 굵은 입자로 오염도가 상대적으로 낮으나 0.075 mm 이하의 작은 입자들은 오염도가 높아 고농도의 염산용액과 긴 세척시간에도 불구하고 오염도를 기준치 이내로 낮추기 어려웠다. 따라서 오염도가 높고, 중금속 농도 저감이 어려운 작은 토양입자들을 토양세척 이전에 물리적인 방법으로 분리할 필요가 있는 것으로 판단된다. 습식 사이클론을 활용한 연속식 토양세척 실험 결과 20% 이상의 미립자를 제거한 경우 오염토양의 중금속 농도를 기준치 이내로 저감시킬 수 있었다.

Keywords

References

  1. Abumaizar, R.J. and Smith E.H., 1999. Heavy metal contaminants removal by soil washing. J. Hazardous Materials, B70, 71-86.
  2. Adrees, M., Ali, S., Rizwan, M., Zia-ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M.F., and Irshad, M.K., 2015. Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology and Environmental Safety, 119, 186-197. https://doi.org/10.1016/j.ecoenv.2015.05.011
  3. Akcil, A., Erust, C., Ozdemiroglu, S., Fonti, V., and Beolchini, F., 2015. A review of approaches and techniques used in aquatic contaminated sediments: metal removal and stabilization by chemical and biotechnological processes. J. Cleaner Production, 86, 24-36. https://doi.org/10.1016/j.jclepro.2014.08.009
  4. Baek, K., Kim, D.H., Seo, C.I., Yang, J.S., and Lee, J.Y., 2007. Remediation of Pb-contaminated soil washing using hydrochloric acid. J. Soil Ground W. Environ., 12(3), 17-22.
  5. Dermont, G., Bergeron, M., Mercier, G., and Richer-Lafleche, M., 2008. Soil washing for metal removal: A review of physical/chemical technologies and field applications. J. Hazrdous Materials, 152, 1-31. https://doi.org/10.1016/j.jhazmat.2007.10.043
  6. Jelusic, M. and Lestan, D., 2014. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties. Science of the Total Environment, 475, 132-141. https://doi.org/10.1016/j.scitotenv.2013.11.049
  7. Jez, E. and Lestan, D., 2016. EDTA retention and emissions from remediated soil. Chemosphere, 151, 202-209. https://doi.org/10.1016/j.chemosphere.2016.02.088
  8. Kim, E.J., Jeon, E.K., and Baek, K., 2016. Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA. Chemosphere, 152, 274-283. https://doi.org/10.1016/j.chemosphere.2016.03.005
  9. Klima, M.S. and Kim, B.H., 1998. Dense-medium separation of heavy-metal particles from soil using a wide-angle hydrocyclone. J. Environmental Science and Health, A33(7), 1325-1340.
  10. KMOE (Korea Ministry of Environment), 2012. Development of Optimized Technology for Remediation of Soils Contaminated with Heavy Metals by Using Soil Washing Process, KMOE Technical Report of Pollution Remediation Technologies 173-092-014, Sejong, Korea, 211p.
  11. Koh, I.H., Kim, E.Y., Ji, W.H., Yoon, D.G., and Chang, Y.Y., 2015. The fate of as and heavy metals in the flooded paddy soil stabilized by limestone and steelmaking slag. J. Soil Ground W. Environ., 20(1), 7-18.
  12. Kwon, J.C., Jeong, S.H., Jung, M.C., and Kim, T.S., 2013. Seasonal variation and correlation between soil and crop plant of arsenic and heavy metal concentrations in paddy fields around the Yeongdae Au-Ag Mine, Korea. J. of the Korean Society of Mineral and Energy Resources Engineers, 50(2), 212-226. https://doi.org/10.12972/ksmer.2013.50.2.212
  13. Kwon, Y.S., Kwon, J.C., Jeong, S.H., Jung, M.C., Kim, K.J., In, H.J., An S.G., Lee, G.C., and Kim, Y.S., 2013. Study of the stabilization of as and heavy metal contaminated farmland soils nearby abandoned metal mines, Korea. J. the Korean Society of Mineral and Energy Resources Engineers, 50(6), 799-809. https://doi.org/10.12972/ksmer.2013.50.6.799
  14. Lee, C.H., Lee, S.Y., Park, C.O., Kim, J.W., Lee, S.H., Park, M.J., Jung, M.Y., and Lee, Y.J. 2015. Characterization of mineralogical and physicochemical properties of soils contaminated with metals at Ga-hak Mine. J. Soil Ground W. Environ., 20(4), 83-89.
  15. Lee, S.H., Kim, E.Y., Seo, S.K., Kim, G.B., Kim, J.H., and Lee, J.K., 2008. Remediation of heavy metal contamination in OBOD site with soil washing : Selection of extractants. J. Soil Ground W. Environ., 13(2), 44-53.
  16. Lim, T.T., Tay, J.H., and Wang, J.Y., 2004. Chelating-agent-enhanced heavy metal extraction from a contaminated acidic soil. J. Environ. Eng., 130(1), 59-66. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:1(59)
  17. MIRECO (Korea Mine Reclamation Corporation), 2014. An Empirical Study on Producing a Pilot Scale Equipment for Sorting Control Heavy Metal Polluted Soil, MIRECO Technical Report 2014-107, Wonju, Korea, 125p.
  18. MIRECO (Korea Mine Reclamation Corporation), 2015. A Study on Eco-Friendly Reclamation Measures of Polluted Soil in Mining Area, MIRECO Technical Report 2015-52, Wonju, Korea, 91p.
  19. Moutsatsou, A., Gregou, M., Matsas, D., and Protonotarios, V., 2006. Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities. Chemosphere, 63, 1632-1640. https://doi.org/10.1016/j.chemosphere.2005.10.015
  20. Park, J.W., 2010. Legal Trend and Issues in the Field of Soil Environment. Environmental Laws and Policies, 4, 149-195. https://doi.org/10.18215/envlp.4..201005.149
  21. Park, S.W., Lee, J.Y., Kwon, T.S., Kim, K.J., Chung, K.Y., and Baek, K., 2009. Feasibility study on the remediation of Zn-contaminated railroad soil using various washing agents. J. Soil Ground W. Environ., 14(1), 78-82.
  22. Pinto, I.S.S., Neto, I.F.F, and Soares, H.M.V.M., 2014. Biodegradable chelating agents for industrial, domestic, and agricultural applications_a review. Environ. Sci. Pollut. Res., 21, 11893-11906. https://doi.org/10.1007/s11356-014-2592-6
  23. Rizwan, M., Ali, S., Abbas, T., Zia-ur-Rehman, M., Hannan, F., Keller, C., Al-Wabel, M.I., and Ok, Y.S., 2016. Cadmium minimization in wheat: A critical review. Ecotoxicology and Environmental Safety, 130, 43-53. https://doi.org/10.1016/j.ecoenv.2016.04.001
  24. Rybicka, E. and Jedrzejczyk, B., 1995. Preliminary studies on mobilisation of copper and lead from contaminated soils and readsorption on competing sorbents. Applied Clay Science, 10, 259-268. https://doi.org/10.1016/0169-1317(95)00006-P
  25. Satyro, S., Race, M., Natale, F.D., Erto, A., Guida, M., and Marotta, R., 2016. Simultaneous removal of heavy metals from field-polluted soils and treatment of soil washing effluents through combined adsorption and artificial sunlightdriven photocatalytic processes. Chemical Engineering J., 283, 1484-1493. https://doi.org/10.1016/j.cej.2015.08.039
  26. Semer, R. and Reddy, K.R., 1996. Evaluation of soil washing process to remove mixed contaminants from a sandy loam. J. Hazardous Materials, 45, 45-57. https://doi.org/10.1016/0304-3894(96)82887-1
  27. Suanon, F., Sun, Q., Dimon, B., Mama, D., and Yu, C., 2016. Heavy metal removal from sludge with organic chelators: Comparative study of N, N-bis (carboxymethyl) glutamic acid and citric acid. J. Environmental Management, 166, 341-347. https://doi.org/10.1016/j.jenvman.2015.10.035
  28. Sun, B., Zhao, F.J., Lombi, E., and Mc Grath, S.P., 2001. Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113, 111-120. https://doi.org/10.1016/S0269-7491(00)00176-7
  29. Tokugawa, S. and Hakuta, T., 2002. Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere, 46, 31-38. https://doi.org/10.1016/S0045-6535(01)00094-7
  30. Zheng, N., Wang, Q., and Zheng, D., 2007. Health risk of Hg, Pb, Cd, Zn and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Science of the Total Environment, 383, 81-89. https://doi.org/10.1016/j.scitotenv.2007.05.002

Cited by

  1. 광산배수 처리를 위한 세멘테이션 공정 중 구리제거효율에 대한 철분 응집의 영향 vol.28, pp.5, 2019, https://doi.org/10.7844/kirr.2019.28.5.74