• Title/Summary/Keyword: point emitter

Search Result 27, Processing Time 0.03 seconds

Calibration of an $^{192}Ir$ Source Used for High Dose Rate RALS. (RALS에 장착한 Ir-192 선원의 강도측정에 대한 고찰)

  • Moon, Un-Chull
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.6 no.1
    • /
    • pp.56-60
    • /
    • 1994
  • In the past, brachytherapy was carried out mostly with radium or radon sources. Currently. use of artificially produced radionuclially produced radionuclides such as $^{137}Cs,\;^{192}Ir,\;^{198}Au,\;and\;^{125}I$ is rapidly increasing. Although electrons are often used as an alternative to interstitial implants, brachytherapy continues to remain an important mode of therapy, either alone or combined with external beam. The National Council on Radiation Protection and Measurements(NCRP) recommends that the strength of any ${\gamma}$ emitter should be specified directly in terms of exposure rate in air at a specified distance such as 1m. The air kerma strength is defined as the product of air kerma rate in 'free space' and the square of the disrance of the calibration point from the source center along the perpendicular bisector, i. e., $S_k=K_L{\times}L^2$. Where $S_K$ is the the air kerma strength and K is the air kerma rate at a specified distance L. (usually 1m). Recommended units for all kerma strength are ${\mu}Gym^{2}h^{-1}$.

  • PDF

Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties (감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과)

  • Jang, Eun-Soo;Lee, Han-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

Backscatter Communication for Wireless-Powered Communication Networks (무선전력 통신네트워크를 위한 Backscatter 통신)

  • Choi, Shin Hyuk;Kim, Dong In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.10
    • /
    • pp.1900-1911
    • /
    • 2015
  • In this paper, we introduce backscatter communication for power-limited sensors to enable long-range transmission in wireless sensor networks, and envision a way to avoid doubly near-far problem in wireless-powered communication network (WPCN) with this technology. In backscatter based WPCN, users harvest energy from both the signal broadcasted by the hybrid access point and the carrier signal transmitted by the carrier emitter in the downlink, and then transmit their own information in a passive way via the reflection of the carrier signal using frequency-shift keying modulation in the uplink. We characterize the energy-free condition and the signal-to-noise ratio (SNR) outage zone in backscatter based WPCN. Further, we propose backscatter based harvest-then-transmit protocol to maximize the sum-throughput of the backscatter based WPCN by optimally allocating time for energy harvesting and information transmission. Numerical results demonstrate that the backscatter based WPCN increases significantly the transmission range and diminishes greatly the SNR outage zone.

Calculation of Absorbed Dose for Immersion in Semi-Infinite Radioactive Cloud...(1) (반무한(半無限) 방사성운(放射性雲)에서의 흡수선량계산(吸收線量計算) - 1. 단일(單一)에너지 감마 방출체(放出體)에 대한 산난광자(散亂光子)스펙트럼의 계산(計算) -)

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.10 no.2
    • /
    • pp.155-159
    • /
    • 1985
  • In general, dose rates for a monoenergetic gamma emitter uniformly distributed in an infinite cloud have been calulated by using the monoenergetic point-isotorpic source kernel technique. The most serious limitation on use of the kernel technique is subjected to the fact that it estimates the dose only at the surface of body. As a result, an alternative method is presented in which estimates of dose rate for immersion in a radioactive cloud are resulted from the scattered photon spectra incident on the surface of body. The results are in excellent agreement with other's. Work is currently in progress to apply these results to immersion dose problems associated with absorbed dose distribution in the MIRD phatom.

  • PDF

Portable titrator equipped spectroscopic detectors; Spectrator (분광학적 검출기가 내장된 휴대용 적정기: 스펙트레이터)

  • Shin, Jiwon;Chae, Gyoyoon;Kim, Yeajin;Kim, Sangho;Chae, Yoonsu;Chae, Won-Seok
    • Analytical Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.128-133
    • /
    • 2021
  • During titration, several chemical reactions result in changes not only in the potential of chemicals, but also in the colors of the indicator. In a potentiometric titration, a titration curve is obtained by measuring the abrupt change in the potential at the endpoint. Generally, acid-base titration is performed by observing the color change caused by an indicator to determine the endpoint. The method of determining the endpoint by measuring the potential difference has been well established and commercialized; however, the devices that can obtain the endpoint by observing the color change are limited. Consequently, in this study, a simple and precise spectral endpoint detector was manufactured using a drop-counter comprising an infrared emitter and a phototransistor, a white light LED as the light source and photodetector, and an analog-to-digital converter (Arduino). Spectrator, a new named, showed excellent results in terms of the reproducibility of acid-base titration using thymol blue as an indicator. Herein, we present the results of the Spectrator-manufacturing process as well as the experimental results.

Low-Power Discrete-Event SoC for 3DTV Active Shutter Glasses (3DTV 엑티브 셔터 안경을 위한 저전력 이산-사건 SoC)

  • Park, Dae-Jin;Kwak, Sung-Ho;Kim, Chang-Min;Kim, Tag-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.18-26
    • /
    • 2011
  • Debates concerning the competitive edge of leading 3DTV technology of the shutter glasses (SG) 3D and the film-type patterned retarder (FPR) are flaring up. Although SG technology enables Full-HD 3D vision, it requires complex systems including the sync transmitter (emitter), the sync processor chip, and the LCD lens in the active shutter glasses. In addition, the transferred sync-signal is easily affected by the external noise and a 3DTV viewer may feel flicker-effect caused by cross-talk of the left and right image. The operating current of the sync processor in the 3DTV active shutter glasses is gradually increasing to compensate the sync reconstruction error. The proposed chip is a low-power hardware sync processor based discrete-event SoC(system on a chip) designed specifically for the 3DTV active shutter glasses. This processor implements the newly designed power-saving techniques targeted for low-power operation in a noisy environment between 3DTV and the active shutter glasses. This design includes a hardware pre-processor based on a universal edge tracer and provides a perfect sync reconstruction based on a floating-point timer to advance the prior commercial 3DTV shutter glasses in terms of their power consumption. These two techniques enable an accurate sync reconstruction in the slow clock frequency of the synchronization timer and reduce the power consumption to less than about a maximum of 20% compared with other major commercial processors. This article describes the system's architecture and the details of the proposed techniques, also identifying the key concepts and functions.

A Study on Properties of a Near-Field Microwave Microscope Using a Waveguide Resonator (도파관 공진기를 이용한 마이크로파 근접장 현미경의 특성에 관한 연구)

  • Kim, Hyun;Kim, Song-Hui;Kim, Joo-Young;Lee, Kie-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.16-24
    • /
    • 2008
  • Near-field scanning microwave microscope (NSMM) has been used to characterize the electromagnetic properties of samples based on a cavity perturbation technique. We used a NSMM using a waveguide cavity to couple a metallic probe tip as a point like evanescent field emitter. We explained the quality of our NSMM system by applying the cavity perturbation theory. First, to make a shape perturbation, we inserted linear and loop probes in the waveguide resonator. To check up electric and magnetic field distribution inside the waveguide resonator by shape perturbation, we confirmed the field distribution by using a HFSS simulation. Second, to make material perturbation, we located a dielectric sample in front of the probe tip and measured reflection coefficient $(S_{11})$. We found that the resonance frequency$(f_r)$ was changed linearly as the dielectric constant of resonator$({\varepsilon}_r)$ increased when ${\Delta}{\varepsilon}\;and\;{\Delta}{\mu}$ were small.