• 제목/요약/키워드: plate theories

검색결과 229건 처리시간 0.024초

T-Joint 용접부의 Groove형상별 크리프 특성에 관한 연구 (A Study on the Creep Characteristics according to Groove Shape of T-Welded Joint)

  • 방한서;김종명
    • 한국해양공학회지
    • /
    • 제13권3호통권33호
    • /
    • pp.68-76
    • /
    • 1999
  • The welding residual stresses produced by the welding frequently caused a crack and promote stress corrosion etc. in HAZ(heat affected zone) contained with external load and weakness of material. Therefore, PWHT(post welding heat treatment) is widely used to reduce wekdubg residuss, to relax hardening of heat affected zone and to get rid of impurity. In this study, in order to define the effect on shappes of T-welded joint, during the post welding heat treatment, we have carried out numerical analyses on the several test pieces by using computer program which was based on thermal-elasto-plato-plasto-creep theories for the study. The main results obtained form this study is as follows: 1) The mechanical difference for change the thickness of plate and groove angle did not appear. 2) The distribution modes of welding residual stresses are same on the all test specimens during the post welding heat treatment. 3) In a mecharical point of view, minimum groove groove angle($40^{circ}$) is more suitable than maximum groove angle($60^{circ}$). 4) Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF

복합적층 및 샌드위치판 전단변형함수에 관한 상호비교연구 (Comparison of Various Shear Deformation Functions for Laminated Composite/Sandwich Plates)

  • 박원태;장석윤;천경식
    • 복합신소재구조학회 논문집
    • /
    • 제1권3호
    • /
    • pp.1-9
    • /
    • 2010
  • 본 연구에서는 Lagrangian 및 Hermite 보간함수를 혼합정식화한 유한요소법과 다양한 전단변형함수로 등방성, 대칭 적층 및 샌드위치판 모델을 제시하였다. 제시된 전단변형이론은 판의 상하면에서 전단응력이 0이 되는 다항식, 삼각함수, 쌍곡삼각함수 및 지수함수로 구성되어 있다. 모든 전단변형함수는 해석해, 정해 및 기발표된 유한요소 결과치와 비교하였으며, 합리적인 정확도를 갖는 것으로 예측되었다. 특히, 지수형태의 전단변형함수(Karama et al. 2003; Aydogu 2009)가 적층 및 샌드위치판 해석에 있어서 상대적으로 가장 우수한 결과를 보였다.

  • PDF

고정밀도 조립을 위한 용접 변형의 해석에 관한 연구 (A Study on the Simulation of Welding Deformation for accurate Assembling)

  • 성기찬;장경복;정진우;강성수
    • 한국정밀공학회지
    • /
    • 제18권4호
    • /
    • pp.129-134
    • /
    • 2001
  • It is essential to predict the welding deformation at assembly stage, to increase productivity through mechanization and automation effectively. A practical analysis method appled for production engineering was proposed to simulate the deformation of arc welding, with an analytical model using finite element method solving thermal-elastic-plastic behavior. In this research, for accurate assembling, 3-D thermal-elastic-plastic finite element model is used to simulate the out-of-plane deformation caused by arc welding. Efforts have been made to find out the efficient method to improve the reliability and accuracy of the numerical calculation. Each of theories of small and large deformation is applied in solving 3-D thermal-elastic-plastic problem to compare with their efficiency about calculation imes and solution accuracy. When solid elements are used in a bending problem of a plate, phenomenon that the predictive deformation is more than that of actual survey is observed. To prevent this phenomenon, reduced integration method for element is employed instead of full integration that is generally used in 3-D thermal-elastic-plastic analysis.

  • PDF

단일황복면 구성모델을 이용한 정규압밀 점토지반의 비배수 거동해석 (Undrained Behaviour of Normally Consolidated Clay Foundation Using Single-Hardening Constitutive Model)

  • 정진섭;이강일;박병기
    • 대한토목학회논문집
    • /
    • 제14권5호
    • /
    • pp.1229-1241
    • /
    • 1994
  • 본 연구는 탄 소성이론에 기초를 둔 Lade의 단일항복면 구성모델을 이용하여 정규압밀 점토지반의 비배수 거동을 연구한 것이다. 시료는 영산강 하류에서 채취한 무안 점토를 재생성시켜 동방압축팽창시험과 압밀비배수 삼축압축시험을 하여 이 구성모델에 필요한 11개의 토질매개변수를 결정하였다. 또한 비배수거동해석을 위한 유한요소 프로그램을 개발하였으며, 프로그램의 정도를 검증하기 위하여 매개변수결정에 사용된 시험결과를 역해석하였다. 그리고 2차원 모형지반에 재하시험을 실시하고 결과를 유한요소 프로그램으로 수치해석하여 서로 비교 검토하였다.

  • PDF

충격하중을 받는 유한평판의 3차원 동탄성이론에 의한 응력해석

  • 양인영;김선규;박정수
    • 오토저널
    • /
    • 제13권5호
    • /
    • pp.51-64
    • /
    • 1991
  • In this paper, an attempt is made to analyze the impulsive stress directly underneath the concentrated impact point for a supported square plate by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement (stress function) on the supposition that the load, F$_{*}$0 sin .omega.t, acted on the central part of it. The results obtained from this study are as follows: 1. The impulsive stress cannot be analyzed directly underneath the acting point of concenrated impact load in privious theories, but can be analyzed by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement. 2. Theorically, with increasing the pulse width of applied load, it was possible to clarify that the amount of stress in the point of concentrated impact load was increased and that of stress per unit impulse was decreased. 3. The numerical inversion of laplace transformation by the use of the F.F.T algorithm contributes the reduction of C.P.U time and the improvement of the accuracy or results. 4. In this paper recommended, it is found that the approximate equation of impact load function P (.tau.) = A.tau. exp (-B.tau.), and P (.tau.) =0.85A exp (-B.tau.) sinC.tau. could actually apply to all impact problem. In compared with the experimental results, the propriety of the analytical method is reasonable.

  • PDF

사질토 지반의 띠하중 재하에 따른 지중응력증가비의 실험적 고찰 (An Experimental Study for Soil Pressure Increment Ratios according to Strip Load in Sandy Soil)

  • 봉태호;김성필;허준;손영환
    • 한국농공학회논문집
    • /
    • 제53권4호
    • /
    • pp.21-27
    • /
    • 2011
  • Soil stress distribution under loading is one of the important problems in civil engineering. Many models have been proposed to interpret the stress distribution in soil and most models assume that the soil is homogeneous and isotropic. Therefore, the actual stress distribution may be different. In addition, With the increase of the top load, soil stress does not increase linearly. In this study, vertical stress changes in sandy soil according to top load increase were measured through experiments. Experimental results, vertical soil stress due to top load increase showed an initial nonlinear behavior and when the load increases to some extent, vertical soil stress showed a linear behavior. ${\alpha}$ value obtained by existing theories always 1.00. But, ${\alpha}$ value by experiment was observed from 0.91 to 1.22 and ${\alpha}$ value was increased with increasing distance from the loading plate.

평면 광도파로 상의 식각 브래그 격자를 이용한 광온도 센서의 개발 (Optical Temperature Sensor Based on the Etched Planar Waveguide Bragg Grating Considering Linear Thermo-optic Effect)

  • Kook-Chan Ahn;Sang-Mae Lee
    • 한국안전학회지
    • /
    • 제16권2호
    • /
    • pp.121-129
    • /
    • 2001
  • 본 논문은 식각된 평면 광도파 브래그 격자를 이용한 광온도 센서의 개발에 대한 연구로써 식각된 평면 도파로 브래그 격자의 설계, 제작, 격자 특성 연구 및 온도 측정 가능성을 주 연구 목적으로 하고 있다. 평면 식각 브래그 격자 센서의 전형적 대역폭과 그 반사도는 각각 ~l,522nm의 파장에서 ~0.2nm와 ~7%이며, 20$0^{\circ}C$까지 온도가 변화하는 동안 온도 변화에 따른 브래그 파장의 변화는 약간의 비선형성을 보였다. 광도파로와 판변형이론에 기초한 브래그 격자의 온도 변화에 따른 광파장 응답을 예측하기 위한 이론적 모델은 실험과 비교할 때 허용 오차내에서 잘 일치하고 있다.

  • PDF

전단변형함수에 따른 역대칭 앵글-플라이 복합면재를 갖는 샌드위치판의 휨거동 평가 (Bending Assessment of Antisymmetric Angle-ply Composite Sandwich Plates with Various Shear Deformation Functions)

  • 박원태;천경식
    • 한국산학기술학회논문지
    • /
    • 제12권11호
    • /
    • pp.5347-5356
    • /
    • 2011
  • 본 연구에서는 Lagrangian/Hermite 보간함수를 혼합정식화한 유한요소법과 다양한 전단변형함수로 역대칭 앵글-플라이 샌드위치판 모델을 비교하였다. 제시된 전단변형함수는 판의 상하면에서 전단응력이 0이 되는 다항식, 삼각함수, 쌍곡삼각함수 및 지수함수로 구성되어 있다. 모든 전단변형함수는 해석해(Analytical solution)와 비교하였으며, 합리적인 정확도를 갖는 것으로 예측되었다. 특히, 지수형태의 전단변형함수가 복합면재를 갖는 샌드위치판 해석에 있어서 상대적으로 가장 우수한 결과를 보였다.

Analytical free vibration solution for angle-ply piezolaminated plate under cylindrical bending: A piezo-elasticity approach

  • Singh, Agyapal;Kumari, Poonam
    • Advances in Computational Design
    • /
    • 제5권1호
    • /
    • pp.55-89
    • /
    • 2020
  • For the first time, an accurate analytical solution, based on coupled three-dimensional (3D) piezoelasticity equations, is presented for free vibration analysis of the angle-ply elastic and piezoelectric flat laminated panels under arbitrary boundary conditions. The present analytical solution is applicable to composite, sandwich and hybrid panels having arbitrary angle-ply lay-up, material properties, and boundary conditions. The modified Hamiltons principle approach has been applied to derive the weak form of governing equations where stresses, displacements, electric potential, and electric displacement field variables are considered as primary variables. Thereafter, multi-term multi-field extended Kantorovich approach (MMEKM) is employed to transform the governing equation into two sets of algebraic-ordinary differential equations (ODEs), one along in-plane (x) and other along the thickness (z) direction, respectively. These ODEs are solved in closed-form manner, which ensures the same order of accuracy for all the variables (stresses, displacements, and electric variables) by satisfying the boundary and continuity equations in exact manners. A robust algorithm is developed for extracting the natural frequencies and mode shapes. The numerical results are reported for various configurations such as elastic panels, sandwich panels and piezoelectric panels under different sets of boundary conditions. The effect of ply-angle and thickness to span ratio (s) on the dynamic behavior of the panels are also investigated. The presented 3D analytical solution will be helpful in the assessment of various 1D theories and numerical methods.

Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory

  • Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Alwabli, Afaf S.;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Computers and Concrete
    • /
    • 제24권4호
    • /
    • pp.369-378
    • /
    • 2019
  • This paper aims to present an analytical model to predict the static analysis of laminated reinforced composite plates subjected to sinusoidal and uniform loads by using a simple first-order shear deformation theory (SFSDT). The most important aspect of the present theory is that unlike the conventional FSDT, the proposed model contains only four unknown variables. This is due to the fact that the inplane displacement field is selected according to an undetermined integral component in order to reduce the number of unknowns. The governing differential equations are derived by employing the static version of principle of virtual work and solved by applying Navier's solution procedure. The non-dimensional displacements and stresses of simply supported antisymmetric cross-ply and angle-ply laminated plates are presented and compared with the exact 3D solutions and those computed using other plate theories to demonstrate the accuracy and efficiency of the present theory. It is found from these comparisons that the numerical results provided by the present model are in close agreement with those obtained by using the conventional FSDT.