Browse > Article
http://dx.doi.org/10.12989/cac.2019.24.4.369

Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory  

Draiche, Kada (Departement de Genie Civil, Universite Ibn Khaldoun Tiaret)
Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Alwabli, Afaf S. (Department of Biology, Faculty of Sciences, King Abdulaziz University)
Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
Publication Information
Computers and Concrete / v.24, no.4, 2019 , pp. 369-378 More about this Journal
Abstract
This paper aims to present an analytical model to predict the static analysis of laminated reinforced composite plates subjected to sinusoidal and uniform loads by using a simple first-order shear deformation theory (SFSDT). The most important aspect of the present theory is that unlike the conventional FSDT, the proposed model contains only four unknown variables. This is due to the fact that the inplane displacement field is selected according to an undetermined integral component in order to reduce the number of unknowns. The governing differential equations are derived by employing the static version of principle of virtual work and solved by applying Navier's solution procedure. The non-dimensional displacements and stresses of simply supported antisymmetric cross-ply and angle-ply laminated plates are presented and compared with the exact 3D solutions and those computed using other plate theories to demonstrate the accuracy and efficiency of the present theory. It is found from these comparisons that the numerical results provided by the present model are in close agreement with those obtained by using the conventional FSDT.
Keywords
static bending; simple FSDT; displacement field; cross-ply; angle-ply laminated plates;
Citations & Related Records
Times Cited By KSCI : 25  (Citation Analysis)
연도 인용수 순위
1 Swain, P., Adhikari, B. and Dash, P. (2017), "A higher-order polynomial shear deformation theory for geometrically nonlinear free vibration response of laminated composite plate", Mech. Adv. Mater. Struct., 25, 1-10. https://doi.org/10.1080/15376494.2017.1365981.
2 Swaminathan, K. and Fernandes, R. (2013), "Higher order computational model for the thermoelastic analysis of cross-ply laminated composite plates", Int. J. Scientif. Eng. Res., 4(5), 119-122.
3 Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.   DOI
4 Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Tounsi, A. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.189.
5 Whitney, J.M. and Pagano, N.J. (1970), "Shear deformation in heterogeneous anisotropic plates", ASME J. Appl. Mech., 37, 1031-1036. https://doi.org/10.1115/1.3408654.   DOI
6 Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.   DOI
7 Tornabene, F. and Viola, E. (2009), "Free vibration analysis of functionally graded panels and shells of revolution", Meccanica, 44, 255-281. https://doi.org/10.1007/s11012-008-9167-x.   DOI
8 Whitney, J.M. (1987), Structural Analysis of Laminated Anisotropic Plates, Technomic Publishing Corp.
9 Xiang, S., Jiang, S.X., Bi, Z.Y, Jin, Y.X. and Yang, M.S. (2011), "A nth-order meshless generalization of Reddy's third-order shear deformation theory for the free vibration on laminated composite plates", Compos. Struct., 93, 299-307. https://doi.org/10.1016/j.compstruct.2010.09.015.   DOI
10 Yang, P.C, Norris, C.H. and Stavsky, Y. (1966), "Elastic wave propagation in heterogeneous plates", Int. J. Solid. Struct., 2, 665-684. https://doi.org/10.1016/0020-7683(66)90045-X.   DOI
11 Meksi, R, Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, SR. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.   DOI
12 Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.   DOI
13 Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.   DOI
14 Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandw. Struct. Mater., 12, 307-325. https://doi.org/10.1177/1099636209104517.   DOI
15 Natanzi, A.J., Jafari, G.S. and Kolahchi, R. (2018), "Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation", Comput. Concrete, 21(5), 569-582. https://doi.org/10.12989/cac.2018.21.5.569.   DOI
16 Noor, A.K. and Burton, W.S. (1989), "Stress and free vibration analyses of multilayered composite plates", Compos. Struct., 11(3), 183-204. https://doi.org/10.1016/0263-8223(89)90058-5.   DOI
17 Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 4(1), 20-34. https://doi.org/10.1177/002199837000400102.   DOI
18 Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.   DOI
19 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press LLC.
20 Reddy, J.N. and Chao, W.C. (1980), "Finite element analysis of laminated bimodulus composite material plates", Compos. Struct., 12(2), 245-251. https://doi.org/10.1016/0045-7949(80)90011-5.   DOI
21 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", ASME J. Appl. Mech., 12, 69-77.
22 Rezaiee-Pajand, M., Shahabian, F. and Tavakoli, F.H. (2012), "A new higher-order triangular plate bending element for the analysis of laminated composite and sandwich plates", Struct. Eng. Mech., 43(2), 253-271. https://doi.org/10.12989/sem.2012.43.2.253.   DOI
23 Heydari, M.M., Kolahchi, R., Heydari, M. and Abbasi, A. (2014), "Exact solution for transverse bending analysis of embedded laminated Mindlin plate", Struct. Eng. Mech, 49(5), 661-672. http://dx.doi.org/10.12989/sem.2014.49.5.661.   DOI
24 Sadoune, M., Tounsi, A., Houari, M.S.A. and Adda Bedia, E.A. (2014), "A novel first-order shear deformation theory for laminated composite plates", Steel Compos. Struct., 17(3), 321-338. https://doi.org/10.12989/scs.2014.17.3.321.   DOI
25 Sahoo, S.S., Panda, S.K. and Mahapatra, T.R. (2016), "Static, free vibration and transient response of laminated composite curved shallow panel-an experimental approach", Eur. J. Mech. A. Solid., 59, 95-113. https://doi.org/10.1016/j.euromechsol.2016.03.014.   DOI
26 Grover, N., Singh, B.N. and Maiti, D.K. (2013), "Analytical and finite element modeling of laminated composite and sandwich plates: an assessment of a new shear deformation theory for free vibration response", Int. J. Mech. Sci., 67, 89-99. https://doi.org/10.1016/j.ijmecsci.2012.12.010.   DOI
27 Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.   DOI
28 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res. (Accepted)
29 Jones, R.M. (1975), Mechanics of Composite Materials, Hemisphere Publishing, New York.
30 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.   DOI
31 Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.   DOI
32 Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.   DOI
33 Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Sys., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.   DOI
34 Christensen, R.M. (1979), Mechanics of Composite Materials, John Wiley and Sons, New York.
35 Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.   DOI
36 Kirchhoff, G.R. (1850), "Uber das gleichgewicht und die bewegungeinerelastischenscheibe", J Pure Appl. Math., 40, 51-88.
37 Kolahchi, R., Safari, M. and Esmailpour, M. (2016), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
38 Loh, E. W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1), 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
39 Mantari, J.L. and Granados, E.V. (2015), "Dynamic analysis of functionally graded plates using a novel FSDT", Compos. Part B, 75, 148-155. https://doi.org/10.1016/j.compositesb.2015.01.028.   DOI
40 Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "Bending and free vibration analysis of isotropic and multilayered plates and shells by using a new accurate higher-order shear deformation theory", Compos. Part B, 43, 3348-3360. https://doi.org/10.1016/j.compositesb.2012.01.062.   DOI
41 Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.   DOI
42 Zenkour, A. and Radwan, A. (2018), "Free vibration analysis of multilayered composite and soft core sandwich plates resting on Winkler-Pasternak foundations", J. Sandw. Struct. Mater., 20(2), 169-190. https://doi.org/10.1177/1099636216644863.   DOI
43 Fadoun, O.O. (2019), "Analysis of axisymmetric fractionalvibration of an isotropic thin disc in finite deformation",Comput. Concrete, 23(5), 303-309.https://doi.org/10.12989/cac.2019.23.5.303   DOI
44 Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671.   DOI
45 Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.   DOI
46 Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018),"Modified porosity model in analysis of functionally gradedporous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40, 141.https://doi.org/10.1007/s40430-018-1065-0.   DOI
47 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "Onvibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14.https://doi.org/10.1016/j.ijengsci.2018.08.007   DOI
48 Sayyad, A.S. and Ghugal, Y.M. (2014), "Flexure of cross-ply laminated plates using equivalent single layer trigonometric shear deformation theory", Struct. Eng. Mech., 51(5), 867-891. http://dx.doi.org/10.12989/sem.2014.51.5.867.   DOI
49 Zenkour, A.M. (2014), "Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a unified formulation", Compos. Part B, 58, 544-552. https://doi.org/10.1016/j.compositesb.2013.10.088.   DOI
50 Sarangan, S. and Singh, B.N. (2016), "Higher order closed form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.   DOI
51 Sayyad, A.S., Ghugal, Y.M. and Shinde, B.M. (2016), "Thermal stress analysis of laminated composite plates using exponential shear deformation theory", Int. J. Autom. Compos., 2(1), 23-40.   DOI
52 Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.   DOI
53 Fares, M.E., Zenkour, A.M. and El-Marghany, M.K. (2000),"Nonlinear thermal effects on the bending response of cross-plylaminated plates using refined first-order theory", Compos.Struct., 49(3), 257-267. https://doi.org/10.1016/S0263-8223(99)00137-3.   DOI
54 Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.   DOI
55 Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.   DOI
56 Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871.   DOI
57 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
58 Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.   DOI
59 Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136. https://doi.org/10.12989/scs.2016.21.1.123.   DOI
60 Bensaid, I., Bekhadda, A. and Kerboua, B. (2018), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., 6(3), 279-298. https://doi.org/10.12989/anr.2018.6.3.279.   DOI
61 Bensattalah, T., Zidour, M. and Daouadji, T.S. (2019), "A new nonlocal beam model for free vibration analysis of chiral singlewalled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31.
62 Auricchio, F. and Sacco, E. (2003), "Refined first-order shear deformation theory models for composite laminates", J. Appl. Mech., 70, 381-390. https://doi.org/10.1115/1.1572901.   DOI
63 Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.   DOI
64 Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco- Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.   DOI
65 Akavci, S.S., Yerli, H.R. and Dogan, A. (2007), "The first ordershear deformation theory for symmetrically laminated composite plates on elastic foundation", Arab. J. Sci. Eng., 32(2), 341-348.
66 Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.   DOI
67 Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Syst. (Accepted)