• Title/Summary/Keyword: plate motion model

Search Result 203, Processing Time 0.024 seconds

A Study on Auto Inspection System of Cross Coil Movement Using Machine Vision (머신비젼을 이용한 Cross Coil Movement 자동검사 시스템에 관한 연구)

  • Lee, Chul-Hun;Seol, Sung-Wook;Joo, Jae-Heum;Lee, Sang-Chan;Nam, Ki-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper we address the tracking method which tracks only target object in image sequence including moving object. We use a contour tracking algorithm based on intensity and motion boundaries. The motion of the moving object contour in the image is assumed to be well describable by an affine motion model with a translation, a change in scale and a rotation. The moving object contour is represented by B-spline, the position and motion of which is estimated along the image sequence. we use pattern recognition to identify target object. In order to use linear Kalman Filters we decompose the estimation process into two filters. One is estimating the affine motion parameters and the other the shape of moving object contour. In some experiments with dial plate we show that this method enables us to obtain the robust motion estimates and tracking trajectories even in case of including obstructive object.

  • PDF

Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory

  • Besseghier, Abderrahmane;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.19 no.6
    • /
    • pp.601-614
    • /
    • 2017
  • In this work, free vibration analysis of size-dependent functionally graded (FG) nanoplates resting on two-parameter elastic foundation is investigated based on a novel nonlocal refined trigonometric shear deformation theory for the first time. This theory includes undetermined integral variables and contains only four unknowns, with is even less than the conventional first shear deformation theory (FSDT). Mori-Tanaka model is employed to describe gradually distribution of material properties along the plate thickness. Size-dependency of nanosize FG plate is captured via the nonlocal elasticity theory of Eringen. By implementing Hamilton's principle the equations of motion are obtained for a refined four-variable shear deformation plate theory and then solved analytically. To show the accuracy of the present theory, our research results in specific cases are compared with available results in the literature and a good agreement will be demonstrated. Finally, the influence of various parameters such as nonlocal parameter, power law indexes, elastic foundation parameters, aspect ratio, and the thickness ratio on the non-dimensional frequency of rectangular FG nanoscale plates are presented and discussed in detail.

Variation of Dynamic Characteristics of Composite Plates Subjected to Electromagnetic and Thermal Fields via Piezoelectric Control (전자기장과 열하중을 받는 복합재료 평판의 압전제어에 따른 동특성 변화)

  • Park, Sang-Yun;Song, Ohseop
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.379-387
    • /
    • 2016
  • Structural model of laminated composite plate based on the first order shear deformation theory and subjected to a combination of piezoelectric, electromagnetic and thermal fields is established. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic and piezoelectric equations which are involved in constitutive equations. Proportional control and velocity feedback control logics are applied via boundary control moments and forces. Variations of dynamic chasracteristics of composite plate with collocated piezoelectric sensor and actuators, electromagnetic field and temperature gradient are investigated and it reveals that dynamic characteristics of structure can be effectively controlled by utilizing the piezoelectric effect and ply angles of fiber reinforced composites.

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar;Atmane, Hassen Ait;Bennai, Riadh;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.511-525
    • /
    • 2019
  • This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM

  • Varun, Katiyar;Ankit, Gupta;Abdelouahed, Tounsi
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.621-640
    • /
    • 2022
  • In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.

Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories

  • Attia, Amina;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.187-212
    • /
    • 2015
  • In this paper, various four variable refined plate theories are presented to analyze vibration of temperature-dependent functionally graded (FG) plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations for the present model is reduced, significantly facilitating engineering analysis. These theories account for parabolic, sinusoidal, hyperbolic, and exponential distributions of the transverse shear strains and satisfy the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. Power law material properties and linear steady-state thermal loads are assumed to be graded along the thickness. Uniform, linear, nonlinear and sinusoidal thermal conditions are imposed at the upper and lower surface for simply supported FG plates. Equations of motion are derived from Hamilton's principle. Analytical solutions for the free vibration analysis are obtained based on Fourier series that satisfy the boundary conditions (Navier's method). Non-dimensional results are compared for temperature-dependent and temperature-independent FG plates and validated with known results in the literature. Numerical investigation is conducted to show the effect of material composition, plate geometry, and temperature fields on the vibration characteristics. It can be concluded that the present theories are not only accurate but also simple in predicting the free vibration responses of temperature-dependent FG plates.

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis

  • Kaddari, Miloud;Kaci, Abdelhakim;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Bedia, E.A. Adda;Al-Osta, Mohammed A.
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.37-57
    • /
    • 2020
  • This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting (열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.

A new and simple HSDT for isotropic and functionally graded sandwich plates

  • Driz, Hafida;Benchohra, Mamia;Bakora, Ahmed;Benachour, Abdelkader;Tounsi, Abdelouahed;Bedia, El Abbes Adda
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.387-405
    • /
    • 2018
  • A novel higher shear deformation theory (HSDT) is proposed for the bending, buckling and free vibration investigations of isotropic and functionally graded (FG) sandwich plates. It contains only four variables, which is even less than the first shear deformation theory (FSDT) and the conventional HSDTs. The model accounts for a parabolic variation of transverse shear stress, respects the traction free boundary conditions and contrary to the conventional HSDTs, the present one presents a novel displacement field which incorporates undetermined integral terms. Equations of motion determined in this work are applied for three types of FG structures: FG plates, sandwich plates with FG core and sandwich plates with FG faces. Analytical solutions are given to predict the transverse displacements, stresses, critical buckling forces and natural frequencies of simply supported plates and a comparison study is carried out to demonstrate the accuracy of the proposed model.