Browse > Article
http://dx.doi.org/10.12989/scs.2022.43.5.581

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation  

Zhang, Zhe (Architectural Engineering Institute, Rizhao Polytechnic)
Yang, Qijian (Rizhao Tiantai Construction and Installation Engineering Co. LTD)
Jin, Cong (Architectural Engineering Institute, Rizhao Polytechnic)
Publication Information
Steel and Composite Structures / v.43, no.5, 2022 , pp. 581-601 More about this Journal
Abstract
The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.
Keywords
FGM; kerr elastic foundation; porous graphene nanoplatelet reinforced composite; sandwich structures; thermal effects; vibration analysis;
Citations & Related Records
Times Cited By KSCI : 24  (Citation Analysis)
연도 인용수 순위
1 Biot, M.A. (1964), "Theory of buckling of a porous slab and its thermoelastic analogy", J. Appl. Mech., 31, 194-198.   DOI
2 Bolton, J.S., Shiau, N.M. and Kang, Y.J. (1996), "Sound transmission through multi-panel structures lined with elastic porous materials", J. Sound Vib., 191(3), 317-347. https://doi.org/10.1006/jsvi.1996.0125.   DOI
3 Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "Vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. http://dx.doi.org/10.12989/scs.2017.23.3.251.   DOI
4 Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.   DOI
5 Daikh, A., Ahmed Houari, M.S. and Tounsi, A. (2019), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Express, 1.
6 DaikhA, A. and Megueni, A. (2018), "Thermal buckling analysis of functionally graded sandwich plates", J. Therm. Stresses, 41, 139-145.   DOI
7 Detournay, E. and Cheng, A.H.D. (1993), "Fundamentals of poroelasticity. In: Analysis and design methods", Pergamon Press, 113-171.
8 Dong Y, Li, X., Gao, K., Li, Y. and Yang, J. (2019), "Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment", Nonlinear Dyn., 981-1000. https://doi.org/10.1007/s11071-019-05297-8.   DOI
9 Kim, C.S. and Dickinson, S.M. (1989), "On the free, transverse vibration of annular and circular, thin, sectorial plates subjected to certain complicating effects", J. Sound Vib., 134(3), 407-421. https://doi.org/10.1016/0022-460X(89)90566-X.   DOI
10 Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020a), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., 34(2), 261-277. http://dx.doi.org/10.12989/scs.2020.34.2.261.   DOI
11 Liew, K.M. and Lam, K.Y. (1993), "On the use of 2-d orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape", Int. J. Mech. Sci., 35(2), 129-139. https://doi.org/10.1016/0020-7403(93)90071-2.   DOI
12 Li, K., Wu, D., Chen, X., Cheng, J., Zhenyu, L., Gao, W. and Muyu, L. (2018), "Isogeometric Analysis of functionally graded porous plates reinforced by graphene platelets", Compos. Struct., 204, 114-130, https://doi.org/10.1016/j.compstruct.2018.07.059.   DOI
13 Mirjavadi, S.S., Forsat, M. and Hamouda, A. (2019), "Dynamic response of functionally graded graphene nanoplatelet reinforced shells with porosity distributions under transverse dynamic loads", Mater. Res. Express., 6(7), 075045.   DOI
14 Arshid, E., Amir, S. and Loghman, A. (2020), "Static and dynamic analyses of FG-GNPs reinforced porous nanocomposite annular micro-plates based on MSGT", Int. J. Mech. Sci., 180, https://doi.org/10.1016/j.ijmecsci.2020.105656   DOI
15 Aghababaei, R. and Reddy, J.N. (2009), "Nonlocal third-order shear deformation plate theory with application to bending and vibration of plates", J. Sound Vib., 326(1-2), 277-289. https://doi.org/10.1016/j.jsv.2009.04.044.   DOI
16 Amir, S., Arshid, E. and Arani, M.R.G. (2019), "Size-dependent magneto-electro-elastic vibration analysis of FG saturated porous annular/circular micro sandwich plates embedded with nano-composite face sheets subjected to multi-physical pre loads", Smart Struct. Syst., 23(5), 429-447, https://doi.org/10.12989/sss.2019.23.5.429.   DOI
17 Arshid, E., Amir, S. and Loghman, A. (2021), "Bending and buckling behaviors of heterogeneous temperature-dependent micro annular/circular porous sandwich plates integrated by FGPEM nano-Composite layers", J. Sandw. Struct. Mater., 23(8), https://doi.org/10.1177/1099636220955027.   DOI
18 Amir, S., Arshid, E. and Khoddami Maraghi, Z. (2020), "Free vibration analysis of magneto-rheological smart annular threelayered plates subjected to magnetic field in viscoelastic medium", Smart Struct. Syst., 25(5), 581-592. https://doi.org/10.12989/sss.2020.25.5.581.   DOI
19 Tanahashi, M. (2010), "Development of fabrication methods of filler/polymer nanocomposites: With focus on simple meltcompounding-based approach without surface modification of nanofillers", Materials, 3, https://doi.org/10.3390/ma3031593.   DOI
20 Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020b), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727. http://dx.doi.org/10.12989/scs.2019.33.5.717.   DOI
21 Arshid, E., Arshid, H., Amir, S. and Behnam Mousavi, S. (2021), "Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory", Archiv. Civ. Mech. Eng., 21(6), https://doi.org/10.1007/s43452-020-00150-x.   DOI
22 Mousavi, S.B., Amir, S., Jafari, A. and Arshid, E. (2021), "Analytical solution for analyzing initial curvature effect on vibrational behavior of PM beams integrated with FGP layers based on trigonometric theories", Adv. Nano Res., 10(3), 235-251, https://doi.org/10.12989/anr.2021.10.3.235.   DOI
23 Tornabene F, Fantuzzi N, Ubertini F and Viola E. (2015), Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67, 1-55.
24 Tornabene, F. and Viola, E. (2008), "2-D solution for free vibrations of parabolic shells using generalized differential quadrature method", Eur. J. Mech., 27(6), 1001-1025. https://doi.org/10.1016/j.euromechsol.2007.12.007.   DOI
25 Arshid, E., Amir, S. and Loghman, A. (2021), "Thermal buckling analysis of FG graphene nanoplatelets reinforced porous nanocomposite MCST-based annular/circular microplates", Aerosp. Sci. Technol., 111, https://doi.org/10.1016/j.ast.2021.106561.   DOI
26 Amir, S., Soleimani-Javid, Z. and Arshid, E. (2019), "Sizedependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT", ZAMM Zeitschrift Fur Angew. Math. Und Mech., 99(9), 1-21, https://doi.org/10.1002/zamm.201800334.   DOI
27 Arshid, E. and Khorshidvand, A.R. (2018), "Free vibration analysis of saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature method", Thin-Walled Struct., 125, 220-233, https://doi.org/10.1016/j.tws.2018.01.007.   DOI
28 Arshid, E., Khorasani, M., Soleimani-Javid, Z., Amir, S. and Tounsi, A. (2021), "Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory", Eng. Comput., 1-22, https://doi.org/10.1007/s00366-021-01382- y.   DOI
29 Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030.   DOI
30 Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA J., 43(5), 1109-1116. https://doi.org/10.2514/1.4683.   DOI
31 Sharma, K. and Marin, M. (2013), "Effect of distinct conductive a thermodynamic temperatures on the reflection of plane waves in micropolar elastic half-space", Scientific Bull., Series A Appl. Mathem. Phys., 75(2), 121-132.
32 Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.   DOI
33 Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. http://dx.doi.org/10.12989/scs.2015.19.3.521.   DOI
34 Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S. and Ahmadi Dastjerdi, A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. http://dx.doi.org/10.12989/scs.2019.33.6.891.   DOI
35 Akbas, S.D. (2017), "Vibration and static analysis of functionally graded porous plates", J. Appl., 3(3), 199-207. https://doi.org/10.22055/jacm.2017.21540.1107.   DOI
36 Arshid, E., Khorshidvand, A.R. and S. Khorsandijou, S.M. (2019), "The effect of porosity on free vibration of SPFG circular plates resting on visco-Pasternak elastic foundation based on CPT, FSDT and TSDT", Struct. Eng. Mech., 70(1), 97-112, https://doi.org/10.12989/sem.2019.70.1.097.   DOI
37 Arshid, E., Kiani, A., Amir, S. and Zarghami Dehaghani, M. (2019), "Asymmetric free vibration analysis of first-order shear deformable functionally graded magneto-electro-thermo-elastic circular plates", Proc. Inst. Mech. Eng. Part C, 233(16), 5659-5675, https://doi.org/10.1177/0954406219850598.   DOI
38 Barati, M.R. and Zenkour, A.M. (2018), "Electro-thermoelastic vibration of plates made of porous functionally graded piezoelectric materials under various boundary conditions", J. Vib. Control., 24(10), 1910-1926. https://doi.org/10.1177/1077546316672788.   DOI
39 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177%2F1099636217693623.   DOI
40 Tahouneh, V. (2017a), "Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate", Steel Compos. Struct., 25(6), 649-661. http://dx.doi.org/10.12989/scs.2017.25.6.649.   DOI
41 Tahouneh, V. (2017b), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., 24(6), 711-726. http://dx.doi.org/10.12989/scs.2017.24.6.711.   DOI
42 Tahouneh, V. (2018), "3-D Vibration analysis of FGMWCNTs/ Phenolic sandwich sectorial plates", Steel Compos. Struct., 26(5), 649-662. http://dx.doi.org/10.12989/scs.2018.26.5.649.   DOI
43 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes", Compos. Part B., 115, 449- 476. https://doi.org/10.1016/j.compositesb.2016.07.011.   DOI
44 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness, Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.   DOI
45 Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part B, 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016.   DOI
46 Wang, Y.Q. (2018), "Electro-mechanical vibration analysis of functionally graded piezoelectric porous plates in the translation state", Acta Astronaut., 143, 263-271. https://doi.org/10.1016/j.actaastro.2017.12.004.   DOI
47 Khare, S. and Mittal, N. (2015), "Free vibration analysis of thin circular and annular plate with general boundary conditions", Eng. Solid Mech., 3(4), 245-252. https://doi.org/10.5267/j.esm.2015.6.002.   DOI
48 Finot, M. and Suresh, S. (1996), "Small and large deformation of thick and thin-film multilayers: Effect of layer geometry, plasticity and compositional gradients", J. Mech. Phys. Solids, 44(5), 683-721. https://doi.org/10.1016/0022-5096(96)84548-0.   DOI
49 Han, J.B. and Liew, K.M. (1999), "Axisymmetric free vibration of thick annular plates", Int. J. Mech. Sci., 41(9), 1089-1109. https://doi.org/10.1016/S0020-7403(98)00057-5.   DOI
50 Kerr, A.D. (1965), "A study of a new foundation model", Acta Mechanica 1/2, 135-147.   DOI
51 Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
52 Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sens. Actuators, 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.   DOI
53 Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. http://dx.doi.org/10.12989/scs.2016.22.1.161.   DOI
54 Yang, J., Chen, D. and Kitipornchai, S. (2018), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.   DOI
55 Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.   DOI
56 Amir, S., Arshid, E., Rasti-Alhosseini, S.M.A. and Loghman, A. (2020), "Quasi-3D tangential shear deformation theory for sizedependent free vibration analysis of three-layered FG porous micro rectangular plate integrated by nano-composite faces in hygrothermal environment", J. Therm. Stress., 43, 133-156. https://doi.org/10.1080/01495739.2019.1660601.   DOI
57 Arshid, E. and Amir, S. (2021), "Size-dependent vibration analysis of fluid-infiltrated porous curved microbeams integrated with reinforced functionally graded graphene platelets face sheets considering thickness stretching effect", Proc. Inst. Mech. Eng. Part L, 235(5), https://doi.org/10.1177/1464420720985556.   DOI
58 Marin, M. and Florea, O. (2014), "On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies", St. Univ. Ovidius Constanta, 22(1), 169-188. https://doi.org/ 10.2478/auom-2014-0014.   DOI
59 Wang, Y.Q., Ye, C. and Zu, J.W. (2019), "Vibration analysis of circular cylindrical shells made of metal foams under various boundary conditions", Int. J. Mech. Mater. Des., 15, 333-344. https://doi.org/10.1007/s10999-018-9415-8.   DOI
60 Wattanasakulpong, N., Chaikittiratana, A. and Pornpeerakeat, S. (2018), "Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory", Acta Mech Sinica, 34, 1124-1135. https://doi.org/10.1007/s10409-018-0770-3.   DOI
61 Marin, M., Agarwal, R.P. and Mahmoud, S.R. (2013), "Nonsimple material problems addressed by the Lagrange's identity", Bound. Value Probl., 135. https://doi.org/10.1186/1687-2770-2013-135.   DOI
62 Mohammadimehr, M., Arshid, E., Alhosseini, S.M.A.R., Amir, S. and Arani, M.R.G. (2019), "Free vibration analysis of thick cylindrical MEE composite shells reinforced CNTs with temperature-dependent properties resting on viscoelastic foundation", Struct. Eng. Mech., 70(6), 683-702, https://doi.org/10.12989/sem.2019.70.6.683.   DOI
63 Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), "Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model", Steel Compos. Struct., 15(4), 399-423. http://dx.doi.org/10.12989/scs.2013.15.4.399.   DOI
64 Amir, S., Arshid, E., Khoddami Maraghi, Z., Loghman, A. and Arani, A.G. (2020), "Vibration analysis of magnetorheological fluid circular sandwich plates with magnetostrictive facesheets exposed to monotonic magnetic field located on visco-Pasternak substrate", J. Vib. Control., 26(17-18), 1523-1537. https://doi.org/10.1177/1077546319899203.   DOI
65 Amir, S., Bidgoli, E.M.R. and Arshid, E. (2018), "Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT", Mech. Adv. Mater. Struc., 27(8), 605- 619. https://doi.org/10.1080/15376494.2018.1487612.   DOI
66 Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.   DOI
67 Khorasani, M., Soleimani-Javid, Z., Arshid, E., Lampani, L. and Civaleke, O. (2020), "Thermo-elastic buckling of honeycomb micro plates integrated with FG-GNPs reinforced Epoxy skins with stretching effect", Compos. Struct., 258, https://doi.org/10.1016/j.compstruct.2020.113430.   DOI
68 Mukhopadhyay, M. (1982), "Free vibration of annular sector plates with edges possessing different degrees of rotational restraints", J. Sound Vib., 1982; 80(2), 275-279. https://doi.org/10.1016/0022-460X(82)90196-1.   DOI
69 Mojahedin, A., Jabbari, M. and Khorshidvand, A.R. (2016), "Buckling analysis of functionally graded circular plates made of saturated porous materials based on higher order shear deformation theory", Thin-Walled Struct., 99, 83-90. https://doi.org/10.1016/j.tws.2015.11.008.   DOI
70 Mukhopadhyay, M. (1979), "A semi-analytic solution for free vibration of annular sector plates", J. Sound Vib., 63(1), 87-95. https://doi.org/10.1016/0022-460X(79)90379-1.   DOI
71 Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two-constants", Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu I Arkhitekture, Moscow, USSR
72 Rafiee, M.A., Rafiee J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890.   DOI
73 Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. http://dx.doi.org/10.12989/scs.2019.33.5.663.   DOI
74 Saidi, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2013), "Thermo-mechanical bending response with stretching effect of functionally graded sandwich plates using a novel shear deformation theory", Steel Compos. Struct., 15(2), 221-245. http://dx.doi.org/10.12989/scs.2013.15.2.221.   DOI
75 Safarpour, M., Rahimi, A., Noormohammadi Arani, O. and Rabczuk, T. (2020), "Frequency characteristics of multiscale hybrid nanocomposite annular plate based on a Halpin-Tsai Homogenization Model with the aid of GDQM", Appl. Sci., 10(4), 1412. https://doi.org/10.3390/app10041412.   DOI
76 Arshid, E., Kiani, A. and Amir, S. (2019), "Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proc. Inst. Mech. Eng. Part L, 233(10), 2140-2159, https://doi.org/10.1177/1464420719832626.   DOI
77 Barati, M.R. (2017), "Dynamic response of porous functionally graded material nanobeams subjected to moving nanoparticle based on nonlocal strain gradient theory", Mater. Res. Express, 4(11). https://doi.org/10.1088/2053-1591/aa9765.   DOI
78 Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct., 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235.   DOI
79 Rajabi, J. and Mohammadimehr, M. (2019), "Hydro-thermomechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations", Steel Compos. Struct., 33(4), 509-523. https://doi.org/10.12989/scs.2019.33.4.509.   DOI
80 Rashad, M. and Yang, T.Y. (2018), "Numerical study of steel sandwich plates with RPF and VR cores materials under free air blast loads", Steel Compos. Struct., 27(6), 717-725. https://doi.org/10.12989/scs.2018.27.6.717.   DOI
81 Barati, M.R. and Zenkour, AM. (2017), "Investigating postbuckling of geometrically imperfect metal foam nanobeams with symmetric and asymmetric porosity distributions", Compos. Struct., 182, 91-98. https://doi.org/10.1016/j.compstruct.2017.09.008.   DOI
82 Tahouneh, V. and Yas, M.H. (2014), "Semianalytical solution for three-dimensional vibration analysis of thick multidirectional functionally graded annular sector plates under various boundary conditions", J. Eng. Mech., 140(1), https://doi.org/10.1061/(ASCE)EM.1943-7889.0000653.   DOI