Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.5.621

Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM  

Varun, Katiyar (School of Engineering, Shiv Nadar Institution of Eminence, Deemed to be University)
Ankit, Gupta (School of Engineering, Shiv Nadar Institution of Eminence, Deemed to be University)
Abdelouahed, Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Steel and Composite Structures / v.45, no.5, 2022 , pp. 621-640 More about this Journal
Abstract
In the present article, the vibration response of a geometrically imperfect bi-directional functionally graded plate (2D-FGP) with geometric discontinuities and micro-structural defects (porosities) has been investigated. A porosity model has been developed to incorporate the effective material properties of the bi-directional FGP which varies in two directions i.e. along the axial and transverse direction. The geometric discontinuity is also introduced in the plate in the form of a circular cut-out at the center of the plate. The structural kinematic formulation is based on the non-polynomial trigonometric higher-order shear deformation theory (HSDT). Finite element formulation is done using C° continuous Lagrangian quadrilateral four-noded element with seven degrees of freedom per node. The equations of motion have been derived using a variational approach. Convergence and validation studies have been documented to confirm the accuracy and efficiency of the present formulation. A detailed investigation study has been done to evaluate the influence of the circular cut-out, geometric imperfection, porosity inclusions, partial supports, volume fraction indexes (along with the thickness and length), and geometrical configurations on the vibration response of 2D-FGP. It is concluded that after a particular cut-out dimension, the vibration response of the 2D FGP exhibits non-monotonic behavior.
Keywords
bi-directional functionally graded plates (2D-FGPs); circular cut-outs; geometric imperfection; microstructure defects; partial supports; vibration response;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Apalak, M.K. and Demirbas, M.D. (2018). "Thermal stress analysis of in-plane two-directional functionally graded plates subjected to in-plane edge heat fluxes", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 232(8), 693-716. https://doi.org/10.1177/1464420716643857.   DOI
2 Benferhat, R., Hassaine Daouadji, T., Hadji, L. and Said Mansour, M. (2016), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21, 123-136. https://doi.org/http://dx.doi.org/10.12989/scs.2016.21.1.123.   DOI
3 Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20, 227-249. https://doi.org/http://dx.doi.org/10.12989/scs.2016.20.2.227.   DOI
4 Cuong-le, T., Nguyen, K.D. and Khatir, S. (2020), "A threedimensional solution for free vibration and buckling of annular plate , conical , cylinder and cylindrical shell of FG porouscellular materials using IGA", Compos. Struct., 113216. https://doi.org/10.1016/j.compstruct.2020.113216.   DOI
5 Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Free vibration analysis of smart porous plates subjected to various physical fields considering neutral surface position", Arab. J. Sci. Eng., 42(5), 1865-1881. https://doi.org/10.1007/s13369-016-2348-3.   DOI
6 Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016. https://doi.org/10.12989/scs.2016.21.5.999.   DOI
7 Gorman, D.J. (1984a), "An exact analytical approach to the free vibration analysis of rectangular plates with mixed boundary conditions", J. Sound Vib., 93(2), 235-247. https://doi.org/10.1016/0022-460X(84)90310-9.   DOI
8 Arefi, M. and Zur, K.K. (2020), "Free vibration analysis of functionally graded cylindrical nanoshells resting on Pasternak foundation based on two-dimensional analysis", Steel Compos. Struct., 34(4), 615-623. https://doi.org/10.12989/scs.2020.34.4.615.   DOI
9 Bansal, G., Gupta, A. and Katiyar, V. (2020), "Influence of geometric discontinuities and geometric/microstructural defects on the temperature-dependent vibration response of functionally graded plates on elastic foundation", J. Brazil. Soc. Mech. Sci. Eng., 42(10). https://doi.org/10.1007/s40430-020-02619-5.   DOI
10 Gorman, D.J. (1984b), "An exact analytical approach to the free vibration analysis of rectangular plates with mixed boundary conditions", J. Sound Vib., 93(2), 235-247. https://doi.org/10.1016/0022-460X(84)90310-9.   DOI
11 Grover, N., Singh, B.N. and Maiti, D.K. (2013), "Analytical and finite element modeling of laminated composite and sandwich plates: An assessment of a new shear deformation theory for free vibration response", Int. J. Mech. Sci., 67, 89-99. https://doi.org/10.1016/j.ijmecsci.2012.12.010.   DOI
12 Gupta, A. and Talha, M. (2018a), "Influence of initial geometric imperfections and porosity on the stability of functionally graded material plates", Mech. Based Des. Struct. Machines, 46(6), 693-711. https://doi.org/10.1080/15397734.2018.1449656.   DOI
13 Hadji, L. and Avcar, M. (2021a), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519. https://doi.org/10.22055/jacm.2020.35328.2628.   DOI
14 Gupta, A. and Talha, M. (2018b), "Influence of porosity on the flexural and free vibration responses of functionally graded plates in thermal environment", Int. J. Struct. Stab. Dyn., 18(1), https://doi.org/10.1142/S021945541850013X.   DOI
15 Gupta, A. and Talha, M. (2018c), "Static and stability characteristics of geometrically imperfect FGM plates resting on pasternak elastic foundation with microstructural defect", Arab. J. Sci. Eng., 43(9), 4931-4947. https://doi.org/10.1007/s13369-018-3240-0.   DOI
16 Gupta, A., Talha, M. and Singh, B.N. (2016), "Vibration characteristics of functionally graded material plate with various boundary constraints using higher order shear deformation theory", Compos. Part B: Eng., 94, 64-74. https://doi.org/10.1016/j.compositesb.2016.03.006.   DOI
17 Hadji, L. and Avcar, M. (2021b), "Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory", Adv. Nano Res., 10, 281-293. https://doi.org/https://doi.org/10.12989/anr.2021.10.3.281.   DOI
18 Hiyam Hazim Saeed, A.A. and Mehmet, A. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/https://doi.org/10.12989/cac.2020.26.3.285.   DOI
19 Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. https://doi.org/10.1016/j.compstruct.2012.09.034.   DOI
20 Katiyar, V. and Gupta, A. (2021), "Vibration response of a geometrically discontinuous bi-directional functionally graded plate resting on elastic foundations in thermal environment with initial imperfections", Mech. Based Des. Struct. Machines, 0(0), 1-29. https://doi.org/10.1080/15397734.2021.1929313.   DOI
21 Kitipornchai, S. and Yang, J. (2004), Semi-Analytical Solution for Nonlinear Vibration of Laminated FGM Plates with Geometric Imperfections. 41, 2235-2257. https://doi.org/10.1016/j.ijsolstr.2003.12.019.   DOI
22 Kitipornchai, S., Yang, J. and Liew, K.M. (2004), "Semi-analytical solution for nonlinear vibration of laminated FGM plates with geometric imperfections", Int. J. Solids Struct., 41(9-10), 2235-2257. https://doi.org/10.1016/j.ijsolstr.2003.12.019.   DOI
23 Laura, P.A.A. and Grossi, R.O. (1981), "Transverse vibrations of rectangular plates with edges elastically restrained against translation and rotation", J. Sound Vib., 75(1), 101-107. https://doi.org/10.1016/0022-460X(81)90237-6.   DOI
24 Lee, H.P., Lim, S.P. and Chow, S.T. (1990), "Prediction of natural frequencies of rectangular plates with rectangular cutouts", Comput. Struct., 36(5), 861-869. https://doi.org/10.1016/0045-7949(90)90157-W.   DOI
25 Malik, M. and Bert, C.W. (1996), "Implementing multiple boundary conditions in the DQ solution of higher-order PDE's: Application to free vibration of plates", Int. J. Numer. Meth. Eng., 39(7), 1237-1258. https://doi.org/10.1002/(SICI)1097-0207(19960415)39:7<1237::AID-NME904>3.0.CO;2-2.   DOI
26 Reddy, J. (2000), "Analysis of functionally graded plates", Int. J. Numer. Methods Eng. 47, 663-684.   DOI
27 Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-020-01154-0.   DOI
28 Sarangan, S. and Singh, B.N. (2016), "Higher-order closed-form solution for the analysis of laminated composite and sandwich plates based on new shear deformation theories", Compos. Struct., 138, 391-403. https://doi.org/10.1016/j.compstruct.2015.11.049.   DOI
29 Shariyat, M. and Mohammadjani, R. (2014), "Three-dimensional stress field analysis of rotating thick bidirectional functionally graded axisymmetric annular plates with nonuniform loads and elastic foundations", J. Compos. Mater., 48(23), 2879-2904. https://doi.org/10.1177/0021998313503389.   DOI
30 Thai, H.T. and Choi, D.H. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elements Anal. Des., 75, 50-61. https://doi.org/10.1016/j.finel.2013.07.003.   DOI
31 Van Do, T., Nguyen, D.K., Duc, N.D., Doan, D.H. and Bui, T.Q. (2017), "Analysis of bi-directional functionally graded plates by FEM and a new third-order shear deformation plate theory", Thin-Wall. Struct., 119, 687-699. https://doi.org/10.1016/j.tws.2017.07.022.   DOI
32 Wang, W., Deng, S., Zhang, S. and Geng, D. (2018), "Vibration analysis and optimization of a rectangular plate with flanging hyperellipse cutout", Shock Vib., 2018. https://doi.org/10.1155/2018/6528071.   DOI
33 Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72, 775-783. https://doi.org/https://doi.org/10.12989/sem.2019.72.6.775.   DOI