Browse > Article
http://dx.doi.org/10.12989/cac.2020.25.1.037

A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis  

Kaddari, Miloud (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Kaci, Abdelhakim (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bousahla, Abdelmoumen Anis (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bourada, Fouad (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department)
Bedia, E.A. Adda (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Al-Osta, Mohammed A. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
Publication Information
Computers and Concrete / v.25, no.1, 2020 , pp. 37-57 More about this Journal
Abstract
This work investigates a new type of quasi-3D hyperbolic shear deformation theory is proposed in this study to discuss the statics and free vibration of functionally graded porous plates resting on elastic foundations. Material properties of porous FG plate are defined by rule of the mixture with an additional term of porosity in the through-thickness direction. By including indeterminate integral variables, the number of unknowns and governing equations of the present theory is reduced, and therefore, it is easy to use. The present approach to plate theory takes into account both transverse shear and normal deformations and satisfies the boundary conditions of zero tensile stress on the plate surfaces. The equations of motion are derived from the Hamilton principle. Analytical solutions are obtained for a simply supported plate. Contrary to any other theory, the number of unknown functions involved in the displacement field is only five, as compared to six or more in the case of other shear and normal deformation theories. A comparison with the corresponding results is made to verify the accuracy and efficiency of the present theory. The influences of the porosity parameter, power-law index, aspect ratio, thickness ratio and the foundation parameters on bending and vibration of porous FG plate.
Keywords
static; free vibration; novel Quasi-3D plate theory; normal stress; porous FG; Kerr foundation;
Citations & Related Records
Times Cited By KSCI : 39  (Citation Analysis)
연도 인용수 순위
1 Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., 5(2), 113-126. https://doi.org/10.12989/anr.2017.5.2.113.   DOI
2 Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Nat. Fib., 1-15. https://doi.org/10.1080/15440478.2018.1503129.
3 Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling". Steel Compos. Struct., 19(3), 679-695. http://dx.doi.org/10.12989/scs.2015.19.3.679.   DOI
4 Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011). "Effects of thickness stretching in functionally graded plates and shells", Compos.: Part B., 42, 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
5 Carrera, E., Brishetto, S. and RRobaldo, A. (2008), "Variable kinematic model for the analysis of functionally graded material plates", AIAA J., 46, 194-203. https://doi.org/10.2514/1.32490.   DOI
6 Chandra Mouli, B., Ramji, K., Kar, V.R., Panda, S.K., Lalepalli, A.K. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527.   DOI
7 Cukanovic, D., Radakovic, A., Bogdanovic, G., Milanovic, M., Redzovic, H. and Dragovic, D. (2018), "New shape function for the bending analysis of functionally graded plate", Mater., 11(12), 2381. https://doi.org/10.3390/ma11122381.   DOI
8 Darilmaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395.   DOI
9 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089.   DOI
10 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B: Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.   DOI
11 Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. Soares, C.M.M. (2012). "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B., 43, 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009.   DOI
12 Nguyen, V.H., Nguyen, T.K., Tai, H.T. and Vo, T.P. (2014), "A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates", Compos. B, 66, 233-246. https://doi.org/10.1016/j.compositesb.2014.05.012.   DOI
13 Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses - An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.   DOI
14 Pasternak, P. (1954), "On a new method of analysis of an elastic foundation by means of two foundation constants", Gosudarstvennoe Izdatelstvo Literaturipo Stroitelstvu i Arkhitekture, Moscow.
15 Ebrahimi, F. and Dashti, S. (2015), "Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279.   DOI
16 Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. http://dx.doi.org/10.12989/scs.2016.20.1.205.   DOI
17 Ehyaei, J., Akbarshahi, A. and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. https://doi.org/10.12989/anr.2017.5.2.141.   DOI
18 Fadoun, O.O. (2019), "Analysis of axisymmetric fractional vibration of an isotropic thin disc in finite deformation", Comput. Concrete, 23(5), 303-309. https://doi.org/10.12989/cac.2019.23.5.303.   DOI
19 Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.   DOI
20 Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos.: Part B Eng., 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029.   DOI
21 Ferreira, A.J.M., Castro, L.M. and Bertoluzza, S. (2009), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-432. https://doi.org/10.1016/j.compstruct.2008.09.006.   DOI
22 Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. https://doi.org/10.12989/sem.2015.53.2.337.   DOI
23 Qian, L.F. and Batra, R.C. (2005), "Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin Method", Comput. Mech., 35(3), 214-226. https://doi.org/10.1007/s00466-004-0617-6.   DOI
24 Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.   DOI
25 Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., A69-A77.
26 Sahoo, S.S., Hirwani, C.K., Panda, S.K. and Sen, D. (2018), "Numerical analysis of vibration and transient behaviour of laminated composite curved shallow shell structure: An experimental validation", Scientia Iranica, 25(4), 2218-2232.
27 Sahoo, S.S., Panda, S.K. and Singh, V.K. (2017a), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", Proc. Inst. Mech. Eng. Part L: J. Mater.: Des. Appl., 231(5), 463-478. https://doi.org/10.1177/1464420715600191.   DOI
28 Sahoo, S.S., Panda, S.K., Mahapatra T.R. and Hirwani, C.K. (2019), "Numerical analysis of transient responses of delaminated layered structure using different mid-plane theories and experimental validation", Iran. J. Sci. Technol. Tran. Mech. Eng., 43(1), 41-56. https://doi.org/10.1007/s40997-017-0111-3.   DOI
29 Hadji, L., Meziane, M.A.A. and Safa, A. (2018), "Mechanical behaviour of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 66(6), 771-781. https://doi.org/10.12989/sem.2017.61.1.049.   DOI
30 Sahoo, S.S., Panda, S.K., Singh, V.K. and Mahapatra T.R. (2017b), "Numerical investigation on the nonlinear flexural behaviour of wrapped glass/epoxy laminated composite panel and experimental validation", Arch. Appl. Mech., 87, 315-333. https://doi.org/10.1007/s00419-016-1195-8.   DOI
31 Sahoo, S.S., Singh, V.K. and Panda, S.K. (2016), "Nonlinear flexural analysis of shallow carbon/epoxy laminated composite curved panels: experimental and numerical investigation", J. Eng. Mech., 142(4), 04016008. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001040.   DOI
32 Salari, E., Ashoori, A. and Vanini, S.A.S. (2019), "Porosity-dependent asymmetric thermal buckling of inhomogeneous annular nanoplates resting on elastic substrate", Adv. Nano Res., 7(1), 25-38. https://doi.org/10.12989/anr.2019.7.1.025.   DOI
33 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.   DOI
34 Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.   DOI
35 Hirwani, C.K. and Panda, S.K. (2018), "Numerical and experimental validation of nonlinear deflection and stress responses of pre-damaged glass-fibre reinforced composite structure", Ocean Eng., 159, 237-252. https://doi.org/10.1016/j.oceaneng.2018.04.035.   DOI
36 Hirwani, C.K., Panda, S.K. and Patel, B.K. (2018c), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8.   DOI
37 Hirwani, C.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K., Srivastava, L. and Buragohain, M.K. (2018a), "Flexural strength of delaminated composite plate-An experimental validation", Int. J. Damage Mech., 27(2), 296-329. https://doi.org/10.1177/1056789516676515.   DOI
38 Hirwani, C.K., Panda, S.K., Mahapatra, T.R., Mandal, S.K., Mahapatra, S.S. and De, A.K. (2018b), "Delamination effect on flexuralresponses of layered curved shallow shell panel-experimental and numerical analysis", Int. J. Comput. Meth., 15(4), 1850027. https://doi.org/10.1142/S0219876218500275.   DOI
39 Hirwani, C.K., Patil, R.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K., Srivastava, L. and Buragohain, M.K. (2016a), "Experimental and numerical analysis of free vibration of delaminated curved panel", Aerosp. Sci. Technol., 54, 353-370. https://doi.org/10.1016/j.ast.2016.05.009.   DOI
40 Shimpi, R.P., Arya, H. and Naik, N.K. (2003), "A higher order displacement model for the plate analysis", J. Reinf. Plast. Compos., 22(22), 1667-1688. https://doi.org/10.1177/073168403027618.   DOI
41 Srinivas, S., Joga, C.V. and Rao, A.K. (1970), "Bending, vibration and buckling of simply supported thick orthotropic rectangular plate and laminates", Int. J. Solid. Struct., 6, 1463-1481. https://doi.org/10.1016/0020-7683(70)90076-4.   DOI
42 Thai, H.T. and Choi, D.H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016.   DOI
43 Thai, H.T. and Kim, S.E. (2013), "A simple higher order shear deformation theory for bending and free vibration of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.   DOI
44 Hirwani, C.K., Sahoo, S.S. and Panda, S.K. (2016b), "Effect of delamination on vibration behaviour of woven Glass/Epoxy composite plate-An experimental study", IOP Conf. Ser.: Mater. Sci. Eng., 115(1), 012010. https://doi.org/10.1088/1757-899X/115/1/012010.
45 Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.   DOI
46 Thai, H.T., Vo, T.P., Bui, T.Q. and Nguyen, T.K. (2014), "A quasi-3D hyperbolic shear deformation theory for functionally graded plates", Acta Mechanica, 225(3), 951-964. https://doi.org/10.1007/s00707-013-0994-z.   DOI
47 Wu, C.P. and Chiu, K.H. (2011), "RMVT-based meshless collocation and element- free Galerkin methods for the quasi-3D free analysis of multilayed composite and FGM plates", Compos. Struct., 93(5), 1433-1448. https://doi.org/10.1016/j.compstruct.2010.07.001.   DOI
48 Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded material", Appl. Math. Model., 30, 67-84. https://doi.org/10.1016/j.apm.2005.03.009.   DOI
49 Jin, G., Su, Z., Shi, S., Ye, T. and Gao, S. (2014), "Three-dimensional exact solution for the free vibration of arbitrarily thick functionally graded rectangular plates with general boundary conditions", Compos. Struct., 108, 565-577. https://doi.org/10.1016/j.compstruct.2013.09.051.   DOI
50 Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.   DOI
51 Kar, V.R. and Panda, S.K. (2016), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Press. Ves. Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.   DOI
52 Karami, B. and Janghorban, M. (2019), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin Wall. Struct., 143, 106-227. https://doi.org/10.1016/j.tws.2019.106227
53 Keikha, R., Heidari, A., Hosseinabadi, H. and Haghighi, M.S. (2018), "Classical shell theory for instability analysis of concrete pipes conveying nanofluid", Comput. Concrete, 22(2), 161-166. https://doi.org/10.12989/cac.2018.22.2.161.   DOI
54 Zenkour, A.M. (2018), "A quasi-3D refined theory for functionally graded single-layered and sandwich plates with porosities", Compos. Struct., 201, 38-48. https://doi.org/10.1016/j.compstruct.2018.05.147.   DOI
55 Zenkour, A.M. (2019), "Quasi-3D refined theory functionally graded porous plates: Displacements and stresses", Appl. Math. Model. 22(1), 22-35. https://doi.org/10.24411/1683-805X-2019-11003.
56 Zenkour, A.M. and Sobhy, M. (2013), "Dynamic bending response of thermoelastic functionally graded plates resting on elastic foundations", Aerosp. Sci. Technol., 29(1), 7-17. https://doi.org/10.1016/j.ast.2013.01.003.   DOI
57 Zhou, D., Cheung, Y., Au, F. and Lo, S. (2002), "Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method", Int. J. Solid. Struct., 39, 6339-6353. https://doi.org/10.1016/S0020-7683(02)00460-2.   DOI
58 Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B: Eng., 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026.   DOI
59 Adim, B. and Daouadji, T.H. (2016), "Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory", Adv. Mater. Res., 5(4), 223-244. https://doi.org/10.12989/amr.2016.5.4.223.   DOI
60 Akavci, S. and Tanrikulu, A. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B: Eng., 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.   DOI
61 Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. http://dx.doi.org/10.12989/scs.2015.19.6.1421.   DOI
62 Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667.   DOI
63 Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct., 29(5), 361-369. https://doi.org/10.12989/was.2019.29.5.361.   DOI
64 Jha, D., Kant, T. and Singh, R. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. https://doi.org/10.1016/j.compstruct.2012.09.034.   DOI
65 Laoufi, I., Ameur, A., Zidi, M., Adda Bedia, E.A. and Bousahla, A.A. (2016), "Mechanical and hygro-thermal behaviour of functionally graded plates using a hyperbolic shear deformation theory", Steel Compos. Struct., 20(4), 889-912. https://doi.org/10.12989/scs.2016.20.4.889.   DOI
66 Liu, Y. (2011), "A refined shear deformation plate theory", Int. J. Comput. Meth. Eng. Sci. Mech., 12(3), 141-149.   DOI
67 Mantari, J., Granados, E., Hinostroza, M. and Soares, C.G. (2014), "Modelling advanced composite plates resting on elastic foundation by using a quasi-3D hybrid type HSDT", Compos. Struct., 118, 455-471. https://doi.org/10.1016/j.compstruct.2014.07.039.   DOI
68 Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.   DOI
69 Amar, L.H.H., Kaci, A. and Tounsi, A. (2017), "On the size-dependent behavior of functionally graded micro-beams with porosities", Struct. Eng. Mech., 64(5), 527-541. https://doi.org/10.12989/sem.2017.64.5.527.   DOI
70 Amar, L.H.H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/scs.2018.26.1.089.   DOI
71 Arefi M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. http://dx.doi.org/10.12989/scs.2015.18.3.659.   DOI
72 Arefi, M. (2015), "The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers", Smart Struct. Syst., 15(5), 1345-1362. http://dx.doi.org/10.12989/sss.2015.15.5.1345.   DOI
73 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
74 Baferani, A.H., Saidi, A. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.   DOI
75 Belkacem, A., Tahar, H.D., Abderrezak, R., Amine, B. M., Mohamed, Z. and Boussad, A. (2018), "Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions", Struct. Eng. Mech., 66(6), 761-769. https://doi.org/10.12989/sem.2018.66.6.761.   DOI
76 Mantari, J.L, Oktem, A.S. and Soares, O.G. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94, 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.   DOI
77 Mehar, K. and Panda, S.K. (2018), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.   DOI
78 Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B: Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.   DOI
79 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.   DOI
80 Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng., 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192.   DOI
81 Mindlin, R.D. (1951), "Thickness-shear and flexural vibrations of crystal plates", J. Appl. Phys., 22(3), 316-323. https://doi.org/10.1063/1.1699948.   DOI
82 Moradi-Dastjerdi, R. (2016), "Wave propagation in functionally graded composite cylinders reinforced by aggregated carbon nanotube". Struct. Eng. Mech., 57(3), 441-456. https://doi.org/10.12989/sem.2016.57.3.441.   DOI