• Title/Summary/Keyword: plate element

Search Result 2,614, Processing Time 0.028 seconds

A refined discrete triangular Mindlin element for laminated composite plates

  • Ge, Zengjie;Chen, Wanji
    • Structural Engineering and Mechanics
    • /
    • v.14 no.5
    • /
    • pp.575-593
    • /
    • 2002
  • Based on the Mindlin plate theory, a refined discrete 15-DOF triangular laminated composite plate finite element RDTMLC with the re-constitution of the shear strain is proposed. For constituting the element displacement function, the exact displacement function of the Timoshenko's laminated composite beam as the displacement on the element boundary is used to derive the element displacements. The proposed element can be used for the analysis of both moderately thick and thin laminated composite plate, and the convergence for the very thin situation can be ensured theoretically. Numerical examples presented show that the present model indeed possesses the properties of higher accuracy for anisotropic laminated composite plates and is free of locking even for extremely thin laminated plates.

Isogeometric Analysis of Laminated Plates under Free Vibration

  • Lee, Sang Jin
    • Architectural research
    • /
    • v.16 no.3
    • /
    • pp.121-129
    • /
    • 2014
  • A plate element is developed by using isogeometric approach in order to determine natural frequencies of laminated composite plates. Reissner-Mindlin (RM) assumptions is adopted to consider the shear deformation and rotatory inertia effect. All terms required in isogeometric element formulation are consistently derived by using Non-uniform rational B-spline surface (NURBS) definition. Gauss quadrature rule is used to form the element stiffness matrix and separately Lobatto quadrature rule is used to calculate element mass matrix. The capability of the present plate element is demonstrated by using numerical examples. From numerical tests, the present isogeometric element produces reliable numerical results for both thin and thick plate situations.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plates

  • Lee, Jae-Wook;Chung, Kie-Tae;Yang, Young-Tae
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.91-100
    • /
    • 1993
  • A displacement-based finite element method Is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. A nonlinear degenerated shell element and a nonlinear degenerated eccentric isoparametric beam (isobeam) element are formulated on the basis of Total Agrangian and Updated Lagrangian descriptions. In the formulation of the isobeam element, some additional local decrees of freedom are implementd to describe the stiffener's local plate buckling modes. Therefore this element can be effectively employed to model the eccentric stiffener with fewer D.O.F's than the case of a degenerated shell element. Some detailed buckling and nonlinear analyses of an eccentrically stiffened plate are performed to estimate the critical buckling loads and the post buckling behaviors including the local plate buckling of the stiffeners discretized with the degenerated shell elements and the isobeam elements. The critical buckling loads are found to be higher than the analytical plate buckling load but lower than Euler buckling load of the corresponding column, i.e, buckling strength requirements of the Classification Societies for the stiffened plates.

  • PDF

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

Deflection and Stress Distributions of a Circular Plate under the Constant Pressure with respect to the Element types (균등 압력이 부과된 원형판의 변형에 대한 해석요소의 정확성 비교)

  • Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • The analysis of circular plates under the constant pressure are simplified as the loading conditions of the circular manhole. The theoretical solution of circular plates with respect to the constant pressures are derived by using the governing equation of plate deflection. The deflection and the radial stress distributions were calculated by the theory. Finite element solutions were conducted with respect to the element types of the continuum elements. The most accurate element was selected by comparisons of the theoretical solutions and simulated solutions. The C3D8I element type in brick-type continuum elements gave in a good accordance with the theoretical solutions.

Modal characteristics of partially perforated rectangular plate with triangular penetration pattern

  • Jhung, Myung J.;Jeong, Kyeong H.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.583-603
    • /
    • 2015
  • There are so many applications of perforated pates with various penetration patterns. If they are penetrated regularly, it can be represented by solid plate with equivalent material properties, which has a benefit of finite element modelling and reducing computation time for the analysis. Because the equivalent material properties suggested already are not proper to be applicable for the dynamic analysis, it is necessary to extract the equivalent material properties for the dynamic analysis. Therefore, in this study, the equivalent modulus of elasticity are obtained for the perforated plate with a triangular penetration pattern by comparing the natural frequencies of the perforated plate with those of solid plate, which are represented with respect to the ligament efficacy. Using the equivalent material properties suggested, the modal analyses of the partially perforated rectangular plate with a triangular penetration pattern are performed and its applicability is shown by comparing natural frequencies of perforated and homogeneous solid plates from finite element method and analytical method.

Rational designing of double-sided nail plate joints using the finite element method

  • Zhou, Tinozivashe;Guan, Z.W.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.2
    • /
    • pp.239-257
    • /
    • 2008
  • Double-sided punched metal plate timber fasteners present projections on both sides, which offer improved joint fire resistance and better joint aesthetics. In this paper, 3-D nonlinear finite element models were developed to simulate double-sided nail plate fastener timber joints. The models, incorporating orthotropic elasticity, Hill's yield criterion and elasto-plasticity and contact algorithms, are capable of simulating complex contact between the tooth and the timber and between the base plate and the timber in a fastener. Using validated models, parametric studies of the double-sided nail plate joints was undertaken to cover the tooth length and the tooth width. Optimal configuration was assumed to have been attained when increase in nail plate tooth width did not result in a raise in joint capacity, in conjunction with the optimum tooth length. This paper presents the first attempt to model and optimise tooth profile of double-sided nail plate fastener timber joints, which offers rational designs of such fasteners.

The patch tests and convergence for nonconforming Mindlin plate bending elements

  • Park, Yong-Myung;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.471-490
    • /
    • 1997
  • In this paper, the classical Irons' patch tests which have been generally accepted for the convergence proof of a finite element are performed for Mindlin plate bending elements with a special emphasis on the nonconforming elements. The elements considered are 4-node and 8-node quadrilateral isoparametric elements which have been dominantly used for the analyses of plate bending problems. It was recognized from the patch tests that some nonconforming Mindlin plate elements pass all the cases of patch tests even though nonconforming elements do not preserve conformity. Then, the clues for the Mindlin plate element to pass the Irons' patch tests are investigated. Also, the convergent characteristics of some nonconforming Mindlin plate elements that do not pass the Irons' patch tests are examined by weak patch tests. The convergence tests are performed on the benchmark numerical problems for both nonconforming elements which pass the patch tests and which do not. Some conclusions on the relationship between the patch test and convergence of nonconforming Mindlin plate elements are drawn.

Design of a lock plate for a converter transformer by finite element method (유한요소법을 이용한 컨버터 변압기 록플레이트 설계)

  • Kim, Ji-Hyun;Kim, Young-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.954-956
    • /
    • 2005
  • For transformer designers, eddy current loss calculation of steel structure is required to consider temperature rise on transformers. This study describes design of a lock plate for converter transformers by finite element method. The lock plate may be locally heated by fringing flux due to air-gap. 3D finite element analysis is performed and compared so as to minimize eddy loss on the lock plate with different materials and structures

  • PDF

Assessment of Xenogenic Bone Plate and Screw using Finite Element Analysis

  • Heo, Su-young;Lee, Dong-bin;Kim, Nam-soo
    • Journal of Veterinary Clinics
    • /
    • v.35 no.3
    • /
    • pp.83-87
    • /
    • 2018
  • The aim of this study was to evaluate the biomechanical behavior of xenogenic bone plate system (equine bone) using a three-dimensional finite element ulna fracture model. The model was used to calculate the Von Mises stress (VMS) and stress distribution in fracture healing periods with metallic bone plate and xenogenic bone plate systems, which are installed while the canine patient is standing. Bone healing rate (BHR) (0%) and maximum VMS of the xenogenic plate was similar to the yield strength of equine bone (125 MPa). VMS at the ulna and fracture zones were higher with the xenogenic bone plate than with the metallic bone plate at BHRs of 0% and 1%. Stress distributions in fracture zone were higher with the xenogenic bone plate than the metallic bone plate. This study results indicate that the xenogenic bone plate may be considered more beneficial for callus formation and bone healing than the metallic bon plate. Xeonogenic bone plate and screw applied in clinical treatment of canines may provide reduced stress shielding of fractures during healing.