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1. Introduction

Abstract

A displacement-based finite element method is presented for the geometrically nonlinear
analysis of eccentrically stiffened plates.

A nonlinear degenerated shell element and a nonlinear degenerated eccentric
isoparametric beam (isobeam) element are formulated on the basis of Total Agrangian and
Updated Lagrangian descriptions. In the formulation of the isobeam element, some ad-
ditional local degrees of freedom are implementd to describe the stiffener’s local plate buck-
ling modes. Therefore this element can be effectively employed to model the eccentric stiff-
ener with fewer D.O.F’s than the case of a degenerated shell element,

Some detailed buckling and nonlinear analyses of an eccentrically stiffened plate are
performed to estimate the critical buckling loads and the post buckling behaviors including
the local plate buckling of the stiffeners discretized with the degenerated shell elements
and the isobeam elements. The critical buckling loads are found to be higher than the ana-
lytical plate buckling load but lower than Euler buckling load of the corresponding column,
i.e, buckling strength requirements of the Classification Societies for the stiffened plates.

trically stiffened plates the

quantitative

It Is very important to verify the structural
stability criteria of the eccentrically stiffened
plates which are basic structural components of
ship and offshore structures, because the loss of
stability can result in catastrophic failures of
total structures.

It has been well recongnized that for the eccen-

verifications of structural stability and post-buck-
ling analyses considering the geometrical form of
the stiffeners are more and more required, as the
sizes of structures become larger!1,2,12,17].

In today’s practice the structural analysis
programs such as SAP, ADINA, NASTRAN, and
others are used to analyze the buckling strength
of stiffened plates by modeling stiffeners with
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beam elements with offsets to consider their
eccentricities. Modeling the stiffeners with beam
elements, however, it is impossible to assess the
possibility of the local plate buckling of the stiff-
ener’s web or flange occurring prior to the column
buckling of a stiffened plate. Of course it is poss-
ible to model the stiffeners and the plate with
plate elements together to investigate the local
plate buckling, if suffering the excessively large
D.O.F’s required. Therefore it has been required
to develop a special beam element, which can
consider the eccentricity and the local plate
buckling behaviors of a stiffener[12,14]

Since Ahmand has introduced the degeneration
concept in describing the geometrical rnotiori of a
continuum as that of the reference line or the ref-
erence plane, many kinds of degenerated
elements have been successfully developed and
used to investigate the geometrical or material
nonlinear analyses[3-16].

In this paper the degenerated shell element and
the degenerated eccentric isobeam element have
been developed and used to idealize the eccentri-
cally stiffened plate, in which Total Lagrangian
(T.L.) and Updated Lagrangian (U.L.) for-
mulations are carefully tested to investigate the
nonlinear behaviors of the degenerated elements.

Numerical iterations in nonlinear analyses are
carried out with new Modified Arc Length
Method or Cylindrical Arc Length Method,
which is one of the revised Newton-Raphson iter-
ation schemes originally proposed by Riks.

2. Finite Element Formulation

2.1 Degenerated shell element

2.1.1 Displacement

As shown in Fig.1, the geometrical shape of a
degenerated shell element can be described with
nodal coordinates and directional vectors at nodes
on the mid-surface of an element. The nodal
behavior can be described with 3 displacements
vectors (U, i=1,2,3) in global rectangular

coordinates and 3 directional vectors (V, i =1,2,3)

At time zero

Fig.1 Degenerated shell elemeént undergoing large
displacements and rotations

in local curvilinear coordinates[3-16]. The geo-
metrical shape of an element at time t can be
written with the nodal coordinates as follows,

v
'X,= I K VXA T Sakt YV 6))

'x; : rectangular coordinates of a point on
an element at time t

txk : rectangular coordinates of k-th node at
time t

HE(r, 5) 1 interpolation functions of 2nd or 3rd or-
der of k-th node in r-s plane

'wk o unit directional vectors of k-th node
normal to the mid-surface

The incremental displacements and the corre-

sponding nodal normal vectors are defined as

follows,
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In the equation (3) Y% can be described as the
trigonometrical functions using the rotational
angles between the nodal normal vector and the

coordinates ‘¥ and the incremental rotations o,

. Assuming that o and * are small and taking
the linear terms from series expansions of
trigonometrical functions, the unit norma} vectors
and the incremental displacements can be
rewritten as follows,

Vi~ E R e

N N
U= i, U +E T ahG, VI (B
k=1 2 21

In ordér to describe the strain-deflection
relations in global coordinates, the partial
derivatives of incremental displacements to the
global coordinates can be defined using the
Jacobian matrix after the derivation of the partial
derivatives of incremental displacement to the lo-
cal coordinates. In T.L. and U.L. formulations
the Jacobian matrices are defined in the initial
configuration and in the deformed configuration
as follows.
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2.1.2 Stress-strain relations

The strain-displacement matrix B can be de-
fined by using equation (7). The incremental lin-
ear strain 'e and the incremental nonlinear strain
td can be defined as follows,

e =B U (8)

wid =0 By Uy (]
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Following the assumptions of a degenerated
shell element, the stress component normal to the
mid-surface can be disregarded and the 2nd Piola
-Kirchhoff incremental stress and the Green-
Lagrange incremental strain can be defined as
the following equation,

S =mC e 10)

~L=GTC'G (a1

, where the G 1s the transformation matrix be-
tween the global and local curvilinear coor-
dinates,

2.2 Degenerated isobeam element

2.2.1 Displacement

In the formulation of the degenerated isobeam
element the interpolation functions of 2nd or 3rd
order are to be taken of same order as those of
degenerated shell elements to satisfy compati-
bility between two elements. The geometrical
shape of a degenerated isobeam element is shown
in Fig.2 and the coordinates of a point in an el-
ement can be written as follows[9-15].

N N
Xi= ZHEOX+ T EOG 2 ste )V (12)

N
* T O eV

#") :interpolation functions of 2nd or 3rd or-
der in r-direction

'yk . normal vectors of k-th node at time t
in s-direction

tyk  :normal vectors of k-th node at time t
in t-direction

a*P  : height and breadth of a beam at k-th
node

eak, epk - eccentricity of a beam at k-th node

r.st  tlocal curvilinear coordinates in an el-
ement
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oy,

Fig. 2 Degenerated isobeam element undergoing
large displacements and rotations

The coordinates (¢&,5,¢) Fig.2, parellel to the local
curvilinear coordinates (r,s,t), are the material
local coordinates to define stresses and strains of
an isobeam element. They can describle the
warping and local plate buckling of the stiffener.
The relationship between two local coordinate
systems can be defined as follows.

E=Xr+X+7, £=0 ¢=
n,=0 n.=a/2 n,=0 13)
C,r:O C,\-zo Cl=b/2

The displacements of a degenerated isobeam el-
ement can be divided into the global and local
displacements, which describes the warping and
the local plate buckling of a beam. The incremen-
tal displacements and the corresponding nodal
normal vectors at time 0, t and t*dt can be writ-
ten as the equation (14) and (15).

N

N
Up=ZT HOUI+ T G2 s—e vy (14)

N
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The partial derivatives of Uy to the global co-

ordinate can be written in terms of their partial
derivatives to the local curvilinear coordinates

n
/ 0 Yo Xy /" Node i
Oxy/xy »

using Jacobian matrix as follows,

U,

(
). ¢

)="J" l( ) (16)

, where m=0 by T.L. and m=r by U.L.
formulations,

The equation (16) can be rewritten in local
curvilinear coordinates as in equation (18) using
the transformation relation in equation (17).

(" X) = ("0)" &) an
(M) (mew Ue o )0) 18)

=("e)y'"J~ ‘( Vs )(”’9)

2.2.2 Local displacement

(a) Torsional mode

The axial displacement due to warping of a
beam subjected to torsions can be described in
equation (19) using the local shape functions
such as the linear function f;(s,t)=st and the
nonlinear function f,(s,t)=s%—st? as shown in

Fig.3 [12,15]. Incremental axial displacements
can be written as follows.

Usr = 3 1G) W Als, 0+ T WA D) (19)

a) fi(s,t)=st

a) fi(st)=s't—st?

Fig.3 Shape functions for warping modes



(b) Local plate buckling mode

If the web of the beam is thin as in Fig 4, the
web plate buckling can be occurred before the
column buckling, n order to describe the local
plate buckling of the stiffener, the incremental
displacements of the web plate are written as
equation  (20-22)
functions of 2nd or 3rd order in s-t plane section
and the Jongitudinal ones as shown in Fig.5 [12].

using the interpolation
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Fig.5 Shape functions for local plate bucking mode
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where A indicates the location where the local
buckling mode is zero. For example A is +1.0 ac-
cording to the attached positions of the stiffener.
Local incremental displacements in a local coordi-
nate system can be obtained by using the
relationships in a equation (13) after deriving the
partial derivatives to the local curvilinear coordi-
nate as follows.

UE UL g

ER or  OE
UE e g

6'] = Er . —5?="—a;~’ N (2/&) (23)
UL U 4 _AUE
- E (2/b)

, where the coordinate transformation with re-
spect to the local D.O.F(y;) is needed at time

step—1 in U.L. formulation.

0  CosC'v,V) 0

[ Cos("7,,'v) O 0 } (24)
0 0

CosU™W,, V)

2.2.3 Stress-strain relations

Calculated separately from the global and the
local displacements on the basis of the local
coordinates, using the equations (18) and (23),
the stain-displacement matrix B can be obtained
and then the incremental strain can be written
separately from the global and local dis-
placements as follows,

me* =, B{U® me*T = e e, ey 0]
e =L B we® = o)
UL = =B, ,US nUT =[U, Vy v,]
mUki=nd =0 By U U =0 Yo g Wy U5 6]
(25)

leg e e e
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, where the incremental strain e, describing
the local plate buckling behavior causes the axial
bending stress, g, and the relation between the
2nd Piola-Kirchhoff incremental stress and the
Green-Lagrange strain can be defined as follows,

mS=mC © m€ (27)

3. Numerical results

Buckling and post-buckling analyses of
stiffened plates are carried out by using
degenerated shell elements and degenerated
isobeam elements. A numerical mode] adoped in
this paper Is shown in Fig.6 and it is idealized in
two different models. The first model is called
PLPL, in which the plates and the stiffeners are
modeled with degenerated shell elements. The

a=3000
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¥
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z

Dimensions of stiffened plate
AU =constant )
j 2
y
v

Geometric boundary condition

Fig.6 Eccentrically stiffened plate

Table 1 F.E model of eccentricaily stiffened piate

quelT Plate Stiffner Node /dof
Deg. shell elements | Deg. shell elements

PLPL | 16 nodes 16 nodes 160 /786
10 elements 5 elements J
Deg. shell elements | Deg. isbeam elements

PLIB | 16 nodes 4 nodes 128/517
10 elements 5 elements

second is called PLIB, in which the stiffeners are
discretized with the degenerated isobeam
elements. The number of elements, nodes and
D.O.F’s are listed in Table 1. The buckling analy-
ses are carried out at time step 2 and their results
are listed in Table 2.

In order to investigate the post-buckling
behavior, a nonlinear analysis has been carried
out up to time step 100. The load-deflection
curves at points A, B and C in Fig.6 are shown in
Fig.9 to Fig.14.

Specially in Fig.14 the required buckling
requirements of Classification Society, which is
343.0 N/mm? (Load factor=>50.0) for a simply

the first mode

X =
“‘:ﬁﬂ-_'ﬂ—'-‘-‘!-.-'—".“="“—

e
W e e e S

‘%‘:‘:“‘;:é e e NN
““‘;"‘“““

the second mode

Fig.7 Bucklihg modes of PLPL model
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Fig.8 Buckling modes of PLIB model
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Fig.9 Pre-and post-buckling behavior of node point
A in x-direction
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Fig.10 Pre-and post-buckling behavior of node
point A in y-direction
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Fig.11 Pre-and post-buckling behavior of node
point A in z-direction

supported beam and 194.0 N /mm? (Load factor =
20.7) for a simply supported plate, are marked
together with the load deflection curves from
nonlinear analysis. As shown in Fig.9—13 the no-
dal deflections in x- and y-direction of the PLPL
model are same as those of the PLIB model, but
the differences of the deflections in z-direction
are thought to be originated from the differences
of loading situations because of the modeling.
When the loads are acting along the free edge of
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Fig.12 Pre-and post-buckling behavior of node
point C in z-direction
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Fig.13 Pre-and post-buckling behavior of node
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the PLPL model, the bending moments are
produced due to the eccentric loads acting on the
stiffener, which results in larger deflections in z-
direction. On the other hand the PLIB model has
no large deflections in z-direction because of
nonexistance of eccentric loads.

As shown in Fig.15 the PLPL model shows un-
stable nonlinear behaviors at load factors 10.0 and
44.0 where deformed shapes are consistent with

*** 50.17 Euler Beam

50.000 TRl
3 2 : kul?
\ s 3kui3
H 4 : kuld
5. kulS\
40,000 x I i
= 3,
< ; //
[
ot
£ 30.000 - —
&
e}
=
Q 000 20.73 Flate Plate
<€ 20.000 -
™
a
g
3 10.000

0.000
—12.000 —9.000 —6.000 —3.000 0000 3.000  6.000
DISPLACEMENT

Fig.14 Pre- and post-buckling behavior of node
point A, B and C in z-direction
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Fig.15 Deformed shapes of PLPL model under axial
loads at 3 different various load factors-30.0,
44.0, 47.0



at step 33

Fig.16 Deformed shape of PLIB model under axial
loads at load factor 32.0

those of the 1st and 3rd mode shapes in buckling
analyses and it is revealed that the 2nd buckling
mode is not shown. It is very interesting to find
in Table 2 that the st critical stress from two
different analysis are same but the 3rd buckling
stress is different from that by nonlinear analysis.
It is thought that the buckling analysis is
performed at time step 2 and the 3rd unstable
phenomenon in the nonlinear analysis has begun
at time step 65. In Fig.14 the stiffened plate
subjected to the compressive loads shows the 1st
local plate buckling modes at load factor 30.0 and
begins to loss the stiffness and show the overall
column buckling mode at load factor 44.0. The
stiffness increases after the load factor 39.0.

The PLIB model shows the 1st unstability at
load factor 32.0, after which the model shows di-
vergency because of the numerical doubling back.
And this model shows relatively small deflection
in z-direction at load factor 32.0, because the
bending moment due to eccentric loading does
not exist. Therefore the deflection in z-direction
is, for comparison, amplified and plotted in Fig.16
and it is confirmed that the deformed shape is
same as the lst eigenmode shape and the load
factor is consistent with that of eigenvalue analy-
sis as shown in Table 2.

4. Conclusions

In order to analyze the geometrical nonlinear
behaviors of stiffened plates a nonlinear finite el-
ement program with degenerated shell elements
and degenerated isobeam elements is developed,
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Table 2 Critical buckling stresses

Critical stress
Model - =op e Remarks
BN
| 205 230 | 25 | 22 | T.L & Eigen
PLPL ¢ 210. | 2. | o | 2 | UL & Eigen.
{»21(’. - 6. 1 - . U.L & Non,
| 212, | 23, Ul 25 TL & Eigen.
PLIB | 212 | 239, | oa2 | 2. | UL & Eigen,
I | UL&Non
Sl e S I S S
Plate | 19%4. \\ *
Beam | 313, -

. . e e
1,23.4: No. of half waves of global and local buckling
modes
T.L : Total Lagrangian approach
U.L : Updated Lagrangian approach
Eigen. : Eigen value problem
Non : Nonlinear path approach
* : Euler stress of simply supported plate
#x : Euler stress of simply supported beam with full effec-
tive breadth

where the Total Lagrange(T.L..) and the
Updated Lagrange(U.L.)
implemented combined with the iteration

formulations  are

schemes such as the modified normal arc length
method or the cyhndrical arc length method.

An eccentrically stiffened plate is modeled with
two different idealizations, ie., a PLPL(Plate-
Plate) model and a PLIB(Plate-Isobeam) model,
The calculation results show that the two models
by T.L. and U.L. formulations give the same
buckling mode shapes but slightly different
stresses by 3.4%. It can be concluded that the
degenerated isobeam element can be an efficient
element to verify the local plate buckling
phenomena of the eccentrically stiffened plate
and effectively used to calculate the local plate
buckling strength.

In the future the numerical doubling buck in
the PLIB model starting at the first critical load
may need to be investigated and some experimen-
tal studies are also needed to verify the exactness
and efficiency of the program developed in this
paper. However the numerical results show that
the program can be a good tool to analyze the
nonlinear behaviors and the buckling for the ec-
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centrically stiffened plate structures typically
built in ship and offshore structures.
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