Browse > Article
http://dx.doi.org/10.12989/sem.2002.14.5.575

A refined discrete triangular Mindlin element for laminated composite plates  

Ge, Zengjie (Key Laboratories of the State for Structural Analysis of Industrial Equipment, Dalian University of Technology)
Chen, Wanji (Key Laboratories of the State for Structural Analysis of Industrial Equipment, Dalian University of Technology)
Publication Information
Structural Engineering and Mechanics / v.14, no.5, 2002 , pp. 575-593 More about this Journal
Abstract
Based on the Mindlin plate theory, a refined discrete 15-DOF triangular laminated composite plate finite element RDTMLC with the re-constitution of the shear strain is proposed. For constituting the element displacement function, the exact displacement function of the Timoshenko's laminated composite beam as the displacement on the element boundary is used to derive the element displacements. The proposed element can be used for the analysis of both moderately thick and thin laminated composite plate, and the convergence for the very thin situation can be ensured theoretically. Numerical examples presented show that the present model indeed possesses the properties of higher accuracy for anisotropic laminated composite plates and is free of locking even for extremely thin laminated plates.
Keywords
laminated composite plate; displacement function of Timoshenko's laminated beam; shear locking;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Chen, Wanji and Cheung, Y.K. (2001), "Refined 9-DOF triangular Mindlin plate element, Int. J. Num. Meth. Eng., 51, 1259-1281.   DOI   ScienceOn
2 Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates", Int. J. Num. Meth. Eng., 29, 533-560.
3 Singh, G., Raju, K.K. and Rao, G.V. (1998), "A new lock-free, material finite element for flexure of moderately thick rectangular composite plates", Comput. Struct., 69, 609-623.
4 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752.   DOI
5 Malkus, D.S. and Hughes, T.J.R. (1978), "Mixed finite element methods-reduced and selective integration techniques: a unification of concepts", Comput. Meth. Appl. Mech. Eng., 15, 63-81.   DOI   ScienceOn
6 Lardeur, P. and Batoz, J.L. (1989), "Composite plane analysis using a new discrete shear triangular finite element", Int. J. Num. Meth. Eng., 27, 343-359.   DOI
7 Rolfes, R., Rohwer, K. and Ballerstaedt, M. (1998), "Efficient linear transverse normal stress analysis of layered composite plates", Comput. Struct., 68, 643-652.   DOI   ScienceOn
8 Pugh, E.D., Hinton, E. and Zienkiewicz, O.C. (1978), "A study of triangular plate bending element with reduced integration", Int. J. Num. Meth. Eng., 12, 1059-1078.   DOI   ScienceOn
9 Pagano, N.J. and Hatfield, S.J. (1972), "Elastic behavior of multilayered bi-directional composites", AIAA J., 10, 931-933.   DOI
10 Kirchhoff, G. (1850), "Uber das gleichgewicht und bewegung einer elastischen scheibe", Journal für die reine und angewandte Math., 40, 51-88.
11 Auricchio, F. and Sacco, E. (1999), "Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT", Composite Structures, 46, 103-113.   DOI   ScienceOn
12 Auricchio, F. and Sacco, E. (1999), "A mixed-enhanced finite-element for the analysis of laminated composite plates", Int. J. Num. Meth. Eng., 44, 1481-1504.   DOI   ScienceOn
13 Satish Kumar, Y.V. and Madhujit Mukhopadhyay (2000), "A new triangular stiffened plate element for laminate analysis", Composites Science and Technology, 60, 935-943.   DOI   ScienceOn
14 Sze, K.Y., He, L.W. and Cheung, Y.K. (2000), "Predictor-corrector procedures for analysis of laminated plates using standard Mindlin finite element models", Composite Structures, 50, 171-182.   DOI   ScienceOn
15 Noor, A.K. and Mathers, M.D. (1975), "Shear-flexible finite element method of laminated composite plates", NASA TN D-8044.
16 Hughes, T.J.R., Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in finite element analysis of plates", Nucl. Eng. Design, 46, 203-222.   DOI   ScienceOn
17 Batoz, J.L. and Katili, I. (1992), "On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints", Int. J. Num. Meth. Eng., 35, 1603-1632.   DOI
18 Chen, Wanji and Cheung, Y.K. (2000), "Refined quadrilateral element based on Midlin/Reissner plate theory", Int. J. Num. Meth. Eng., 47, 605-627.   DOI   ScienceOn
19 Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: An extended DKT element for thick-plate bending analysis", Int. J. Num. Meth. Eng., 36, 1859-1883.   DOI   ScienceOn
20 Lakshminarayana, H.V. and Murthy, S.S. (1984), "A shear-flexible triangular finite element model for laminated composite plates", Int. J. Num. Meth. Eng., 20, 591-623.   DOI   ScienceOn
21 Lo, K.H., Christensen, R.M. and Wu, E.M. (1977), "A higher-order theory of plate deformation. Part 2: laminated plates", J. Appl. Mech., 44, 669-676.   DOI
22 Mindlin, R.D. (1951), "Influence of rotary inertia and shear on flexural motions of isotropic elastic plates", J. Appl. Mech., 18, 31-38.
23 Vlachoutsis, S. (1992), "Shear correction factors for plates and shells", Int. J. Num. Meth. Eng., 33, 1537-1552.   DOI
24 Rolfes, R. and Rohwer, K. (1997), "Improved transverse shear stresses in composite finite elements based on first order shear deformation theory", Int. J. Num. Meth. Eng., 40, 51-60.   DOI   ScienceOn
25 Sadek, E.A.(1998), "Some serendipity finite element for the analysis of laminate plates", Comput. Struct., 69, 37- 51.   DOI   ScienceOn
26 Sheikh, A.H., Haldar, S. and Sengupta, D. (2002), "A high precision shear deformable element for the analysis of laminated composite plates of different shapes", Comput. Struct., 55, 329-336.   DOI   ScienceOn
27 Zienkiewicz, O.C., Taylor, R.L. and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Num. Meth. Eng., 3, 275-290.   DOI
28 Wilt, T.E., Saleeb, A.F. and Chang, T.Y. (1990), "A mixed element for laminated plates and shells", Comput. Struct., 37(4), 597-611   DOI   ScienceOn
29 Pryor, C.W. and Barker, R.M. (1971), "A finite element analysis including transverse shear effects for application to laminated plates", AIAA J., 9, 912-917.   DOI
30 Whitney, J.M. (1973), "Shear correction factors for orthotropic laminates under static load", J. Appl. Mech., 40, 302-304.   DOI
31 Somashekar, B.R., Prathap, G. and Ramesh, B.C. (1987), "A field consistent four-node laminated anisotropic plate/shell element", Comput. Struct., 25(3), 345-353.   DOI   ScienceOn
32 Spilker, R.L., Jakobs, D.M. and Engelmann, B.E. (1985), "Efficient hybrid stress isoparametric elements for moderately thick and thin multiplayer plates", In: Spilker, R.L. and Reed, K.W., editors. Hybrid and Mixed Finite Element Methods, ASME, AMD-vol-73, New York.