• Title/Summary/Keyword: plasmid transfer

Search Result 157, Processing Time 0.023 seconds

Identification of three pathways for p-cresol catabolism and their gene expression in Pseudomonas alkylphenolica KL28 (Pseudomonas alkylphenolica KL28에 존재하는 3종류의 p-cresol 분해 경로 및 유전자 발현)

  • Sung, Jin Il;Lee, Kyoung
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.298-305
    • /
    • 2016
  • Previously our laboratory showed that Pseudomonas alkylphenolica KL28 possesses two different lap and pcu gene clusters for p-cresol catabolism. In this study, additional gene cluster (pchACXF-pcaHG-orf4-pcaBC) has been identified to encode enzymes necessary for catabolism of p-cresol to ${\beta}$-carboxy-cis,cis-muconate. This gene cluster showed almost identical nucleotide sequence homologies to those in the plasmid of Pseudomonas putida NCIMB 9866 and 9869, British origins, indicating the possibility of a horizontal gene transfer. Through mutagenesis of each gene cluster and gfp-based promoter reporter assays, it has been shown that the three gene clusters are functionally operated and pch genes are induced by p-cresol. Furthermore, the pcu gene cluster of the three was shown to be dominantly expressed in utilization of p-cresol. Mutation of the pcu gene was defective in aerial structure formation under p-cresol vapor, indicating the utilization rate of carbon source is one of key elements for the multicellular development of this strain.

Transconjugation for Molecular Genetic Study of Streptomyces platensis Producing Transglutaminase (Transglutaminase를 생산하는 Streptomyces platensis의 분자생물학적인 연구를 위한 접합 전달법 확립)

  • Bae, Se-Joung;Jo, Yang-Ho;Choi, Sun-Uk
    • Journal of Life Science
    • /
    • v.20 no.1
    • /
    • pp.97-102
    • /
    • 2010
  • Streptomyces platensis YK-2, newly isolated from forest soil, produces transglutaminase (TGase), which catalyses an acyl transfer reaction between the primary grade amine and protein or $\gamma$-carboxyamide group of peptide bound glutamine residues. For a molecular genetic study of S. platensis, an effective transformation method was established by using a conjugal transfer of DNA from Escherichia coli to spores of actinomycetes. The highest transconjugation frequency of S. platensis was obtained on an MS medium containing 50 mM $MgCl_2$, using $5{\times}10^7\;E$. coli as a DNA donor and $1{\times}10^8$ spores without heat treatment as a host. We also identified that S. platensis contains a single attB site within an ORF encoding a pirin-homolog, and that its attB site sequence shows high homology to that of S. logisporoflavus. In addition, it was confirmed by phenotypic analyses of exconjugants that the introduction of heterologous DNA into the attB site of the S. platensis chromosome does not affect its morphological differentiation and TGase production.

Curing and segregation of pSL100 and recombination of its segregants (Plasmid pSL100의 curing, segregation 및 segregants 들의 재조합에 관한 연구)

  • 백형석;김국찬;이세영
    • Korean Journal of Microbiology
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 1982
  • A study was undertaken to examine the effect of curing agents on the stability, curing and segregation of R plasmid pSL100. And also the stability, transfer frequency, and recombination of its segregants obtained from curing agent treatment were studied. Ethidium bromide, acridine orange, and mitomycin-C were used as curing agent. The results obtained were as follows ; 1. The curing agent ethidium bromide, acridine orange, and mitomycin-C were not effective for curing the multiple antibiotic resistant determinant of pSL100 in Salmonella typhimurium and Escherichia coli. However, they induced plasmid segregation with high frequency in S.typhimuruim LT-2strains. TcApSmCm, TcSmCmKm, TcApCm, TcAp, TcKm, Tc segregants were obtained. 2. The resistant markers of the segregents were transferred to S.typhimurium LT-2 strains with high frequencies whereas they were transferred to E.coli K-12 only with low frequencies. 3. The transconjugants obtained from conjugation between two different S.typhimurium segregants were similar to the phenotype of the original R factor pSL100 and the resistant markers were transferred to the S.typhimurium LT-2 or E.coli strain with equal frequencies, indicating that they are recombinants. 4. The transconjugants obtained from conjugation between pSL100 segrgants and pKM101, or pBR322 possessed the resistant markers of the two parental plasmids and they were transferred to both S.typhimurium and E.coli K-12 strains with the same frequencies and maintained stably, suggesting that they are also recombinants. 5. The recombinant pSL100 could be also obtained in rec A-strains of E.coli, suggesting that the gene function of rec A is required for the recombination of pSL100 segregants in E.coli.

  • PDF

Virus-like Particles Containing Cytokine Plasmid DNA (사이토카인 유전자 함유 바이러스 유사입자의 제조)

  • Oh, Yu-Kyoung;Son, Tae-Jong;Sin, Kwang-Sook;Kang, Min-Jeong;Kim, Jung-Mogg;Kim, Nam-Keun;Ko, Jung-Jae;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.185-190
    • /
    • 2001
  • Human papillomavirus (HPV) infection is known to cause cervical cancers. Human papillomavirus-like particles (VLP) have been studied as preventive vaccines of cervical cancers. To develop VLP as a therapeutic gene carrier, we studied the method to encapsulate cytokine genes in virus-like particles. HPV type 16 capsid L1 genes were amplified by polymerase chain reaction and cloned into T vector. L1 gene was then inserted into baculovirus transfer vector. The clone of baculovirus encoding L1 gene was isolated and used to express L1 protein in Sf 21 insect cells. VLP were purified by CsCl density gradient and ultracentrifugation. VLP were disassembled to capsomer units by treatment of a reducing agent. Given that interleukin-2 (IL-2) genes have been used in anticancer gene therapy and as a molecular adjuvant, IL-2 cytokine plasmids were chosen as a model gene. IL-2 plasmids were incubated with the disassembled capsomer suspension. To reassemble the particles, the mixture of capsomers and cytokine plasmids was dialyzed. The disassembly and reassembly of VLP were confirmed by transmission electron microscopy. The entrapment of cytokine plasmids in reassembled VLP was tested by the stability of plasmids against DNase I. After treatment of reassembled virus-like particles with DNase I, discrete IL-2 DNA band was observed. Our results indicate that IL-2 cytokine plasmid (3.5 kb size) can be encapsulated in the virus-like particles, suggesting the potential of VLP as a gene delivery system. Moreover, VLP containing the adjuvant cytokine plasmids might function as more effective subunit vaccines.

  • PDF

Construction of Transformation Method for Streptomyces scabiei ATCC 49173 Producing Phytotoxin (식물독소를 생산하는 Streptomyces scabiei ATCC 49173의 형질전환법 구축)

  • Jang, Bo-Youn;Ha, Heon-Su;Choi, Sun-Uk
    • KSBB Journal
    • /
    • v.25 no.2
    • /
    • pp.167-172
    • /
    • 2010
  • Streptomyces scabiei producing phytotoxin called thaxtomin, which cause scab disease on economically important crops such as potato. For molecular genetics study of S. scabiei an effective transformation method was established based on conjugal transfer from Escherichia coli ET12567 (pUZ8002) using a phiC31-derived integration vector, pSET152, containing oriT and attP fragments. The high frequency was obtained on MS medium containing 50 mM $MgCl_2$. In addition, the sequence and location of the chromosomal integration attB site of S. scabiei was identified for the first time in the strains producing thaxtomin by the southern blot analysis of exconjugants and the sequencing of plasmid containing DNA flanking the insertion sites from exconjugant chromosome. Similar to the case of Streptomyces species, a single phiC31 attB site of S. scabiei is present within an ORF encoding a pirin-homolog.

CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases

  • Kim, Jun-Seob;Cho, Da-Hyeong;Park, Myeongseo;Chung, Woo-Jae;Shin, Dongwoo;Ko, Kwan Soo;Kweon, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.394-401
    • /
    • 2016
  • Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

Plasmid Sequence Data Analysis to Investigate Antibiotic Resistance Gene Transfer among Swine, Swine Farm and Their Owners (돼지와 양돈장 및 농장 관계자 간에 발생하는 항생제 내성 유전자 전파 조사를 위한 플라스미드 염기서열 분석)

  • Yujin Jeong;Sunwoo Lee;Jung Sik Yoo;Dong-Hun Lee; Tatsuya Unno
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.269-278
    • /
    • 2023
  • Antibiotics either kill or inhibit the growth of bacteria. However, antibiotic-resistant bacteria are difficult to treat with antibiotics. Infections caused by such bacteria often lead to severe diseases. Antibiotic resistance genes (ARG) can be horizontally transmitted across different bacterial species, necessitating a comprehensive understanding of how ARGs spread across various environments. In this study, we analyzed the plasmid sequences of 33 extended-spectrum beta-lactamases (ESBL) producing Escherichia coli isolated from pigs, farms, and their owners. We conducted an antibiotic susceptibility test (AST) with aztreonam and seven other antibiotics, as well as whole genome sequencing (WGS) of the strains using MinION. Our results demonstrated that the plasmids that did not harbor ARGs were mostly non-conjugative, whereas the plasmids that harbored ARGs were conjugative. The arrangement of these ARGs exhibited a pattern of organization featuring a series of ARG cassettes, some of which were identical across the isolates collected from different sources. Therefore, this study suggests that the sets of ARG cassettes on plasmids were mostly shared between pigs and their owners. Hence, enhanced surveillance of ARG should be implemented in farm environments to proactively mitigate the risk of antibiotic-resistant bacterial infections.

Genetic Transformation of the Mycelia of Tremella fuciformis and Changes of Cytotoxicity (흰목이 균사체 형질전환 및 세포독성의 변화)

  • Shin, Dong-Il;Park, Hee-Sung
    • The Korean Journal of Mycology
    • /
    • v.41 no.4
    • /
    • pp.287-291
    • /
    • 2013
  • Tremella fuciformis, as one of higher basidiomycetes, can asexually reproduce yeast-like conidium (YLC) cells by budding. We have developed an efficient method to introduce pCambia1300 plasmid containing hph gene into YLC cells using Agrobacterium. This was successful only when YLC cells were wounded by NaOH treatment before co-cultivation. In average, 40~50 transformants were produced out of $1.0{\times}10^6$ YLC cells investigated. The T-DNA transfer was confirmed by PCR. Methanolic extracts from transformants demonstrated different levels of toxicity against SKOV-3 cervical cancer cells.

Transfer of Insecticidal Toxin Gene in Plants:Cloning of Insecticidal Protein Gene in Bacillus thuringiensis (식물세포에 살충독소 유전자의 전이: Bacillus thuringiensis 살충단백질 유전자의 클로닝)

  • 이형환;황성희;박유신
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.6
    • /
    • pp.647-652
    • /
    • 1990
  • The production of delta-endotoxin crystal and the cloning of endotoxin protein gene in Bscillus thuringiensis subsp. kurstaki HD1 strain were studied. The strain produced bipyramidal crystals ($2.9\times 1.0 \mu m$) in their cells during sporulation. The B. thuringiensis contained about 10 plasmid DNA elements ranging from 2.1 to 80 kilobases. The 73 kb plasmid DNA, the 29 kb BamHI fragment and the 7.9 kb Pstl DNA fragment hybridized to the pHL probe. The 7.9 kb fragment was eluted and cloned in the PstI site of pBR322 vector and transformed into E. coli HB101, which produced insecticidal proteins killing Bornbyx mori larvae.

  • PDF

Cloning and Expression of $\beta$-Xylosidase Gene from Alkali-tolerant Bacillus sp. YA-14 in Escherichia coli (알카리 내성 Bacillus sp. YA-14의 $\beta$-Xylosidase 유전자의 Cloning 및 대장균에의 발현)

  • 박덕철;김진만;정용준;공인수;배동훈;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.6
    • /
    • pp.574-579
    • /
    • 1989
  • Chromosomal DNA fragments of Bacillus sp. YA-14, isolated from soil as a potent $\beta$-xylosidase producing bacterium, were ligated to a vector plasmid pBR322 and used to transfer Escherichia coli HB101 cells. The recombinant plasmid pYXL22 was found to enable the transformants to produce $\beta$-xylosidase. pYXL22 was found to contain the 7.0 kb HindIII DNA fragment originated from the Bacillus sp. YA-14 chromosomal DNA by Southern hybridization. The optimum temperature for the reaction of $\beta$-xylosidase produced by E. coli HB101 (pYXL22) was appeared at 3$0^{\circ}C$. The enzyme was maintained stably up to 4$0^{\circ}C$ when stored 1hr at 4$0^{\circ}C$. The $\beta$-xylosidase was repressed completely by 0.4% (w/v) glucose concentration in E. coli HB101 (pYXL22). The optimum concentration of xylose for the $\beta$-xylosidase production in Bacillus sp. YA-14 was 0.2% (w/v).

  • PDF