DOI QR코드

DOI QR Code

Plasmid Sequence Data Analysis to Investigate Antibiotic Resistance Gene Transfer among Swine, Swine Farm and Their Owners

돼지와 양돈장 및 농장 관계자 간에 발생하는 항생제 내성 유전자 전파 조사를 위한 플라스미드 염기서열 분석

  • Yujin Jeong (Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University) ;
  • Sunwoo Lee (Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University) ;
  • Jung Sik Yoo (Division of Antimicrobial Resistance Research, National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency) ;
  • Dong-Hun Lee (Department of Microbiology, College of Natural Sciences, Chungbuk National University) ;
  • Tatsuya Unno (Department of Microbiology, College of Natural Sciences, Chungbuk National University)
  • 정유진 (제주대학교 생명자원과학대학 생명공학부) ;
  • 이선우 (제주대학교 생명자원과학대학 생명공학부) ;
  • 유정식 (질병관리청 국립보건연구원 감염병연구센터 약제내성연구과) ;
  • 이동훈 (충북대학교 자연과학대학 미생물학과) ;
  • 운노타쯔야 (충북대학교 자연과학대학 미생물학과)
  • Received : 2023.10.26
  • Accepted : 2023.11.07
  • Published : 2023.12.31

Abstract

Antibiotics either kill or inhibit the growth of bacteria. However, antibiotic-resistant bacteria are difficult to treat with antibiotics. Infections caused by such bacteria often lead to severe diseases. Antibiotic resistance genes (ARG) can be horizontally transmitted across different bacterial species, necessitating a comprehensive understanding of how ARGs spread across various environments. In this study, we analyzed the plasmid sequences of 33 extended-spectrum beta-lactamases (ESBL) producing Escherichia coli isolated from pigs, farms, and their owners. We conducted an antibiotic susceptibility test (AST) with aztreonam and seven other antibiotics, as well as whole genome sequencing (WGS) of the strains using MinION. Our results demonstrated that the plasmids that did not harbor ARGs were mostly non-conjugative, whereas the plasmids that harbored ARGs were conjugative. The arrangement of these ARGs exhibited a pattern of organization featuring a series of ARG cassettes, some of which were identical across the isolates collected from different sources. Therefore, this study suggests that the sets of ARG cassettes on plasmids were mostly shared between pigs and their owners. Hence, enhanced surveillance of ARG should be implemented in farm environments to proactively mitigate the risk of antibiotic-resistant bacterial infections.

Keywords

Acknowledgement

This work was supported by the research program funded by the Korea Disease Control and Prevention Agency (2020-ER5408-00). The pathogen resources (NCCP NMS1179 and 32 other strains) for this study were provided by the National Institute of Health Multidrug Resistant Bacteria Specialized Pathogen Resources Bank in Korea. This work was supported by a funding for the academic research program of Chungbuk National University in 2023.

References

  1. Malik B, Bhattacharyya S (2019) Antibiotic drug-resistance as a complex system driven by socio-economic growth and antibiotic misuse. Scientific Reports, 9(1), 9788. https://doi.org/10.1038/s41598-019-46078-y.
  2. Gould I (1999) A review of the role of antibiotic policies in the control of antibiotic resistance. Journal of Antimicrobial Chemotherapy, 43(4), 459-465. https://doi.org/10.1093/jac/43.4.459.
  3. Baquero F, Martinez JL, Canton R (2008) Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3), 260-265. https://doi.org/10.1016/j.copbio.2008.05.006.
  4. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA et al. (2018) Antibiotic resistance: a rundown of a global crisis. Infection and Drug Resistance, 1645-1658. https://doi.org/10.2147/IDR.S173867.
  5. Larsson DJ, Flach CF (2022) Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257-269. https://doi.org/10.1038/s41579-021-00649-x.
  6. Dibner J, Richards JD (2005) Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science, 84(4), 634-643. https://doi.org/10.1093/ps/84.4.634.
  7. Lim SK, Lee JE, Lee HS, Nam HM, Moon DC, Jang GC, Park YJ, Jung YG, Jung SC et al. (2014). Trends in antimicrobial sales for livestock and fisheries in Korea during 2003-2012. Korean Journal of Veterinary Research, 54(2), 81-86. https://doi.org/10.14405/kjvr.2014.54.2.81.
  8. Kunhikannan S, Thomas CJ, Franks AE, Mahadevaiah S, Kumar S, Petrovski S (2021) Environmental hotspots for antibiotic resistance genes. Microbiologyopen, 10 (3), e1197. https://doi.org/10.1002/mbo3.1197.
  9. Yang F, Han B, Gu Y, Zhang K (2020) Swine liquid manure: A hotspot of mobile genetic elements and antibiotic resistance genes. Scientific Reports, 10(1), 15037. https://doi.org/10.1038/s41598-020-72149-6.
  10. Masse DI, Cata Saady NM, Gilbert Y (2014) Potential of biological processes to eliminate antibiotics in livestock manure: An overview. Animals, 4(2), 146-163. https://doi.org/10.3390/ani4020146.
  11. He Y, Yuan Q, Mathieu J, Stadler L, Senehi N, Sun R, Alvarez PJ (2020) Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. NPJ Clean Water, 3(1), 4. https://doi.org/10.1038/s41545-020-0051-0.
  12. Zhao X, Wang J, Zhu L, Wang J (2019) Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Science of the Total Environment, 654, 906-913. https://doi.org/10.1016/j.scitotenv.2018.10.446.
  13. Jechalke S, Heuer H, Siemens J, Amelung W, Smalla K (2014) Fate and effects of veterinary antibiotics in soil. Trends in Microbiology, 22(9), 536-545. https://doi.org/10.1016/j.tim.2014.05.005.
  14. Ghimpeteanu OM, Pogurschi EN, Popa DC, Dragomir N, Dragotoiu T, Mihai OD, Petcu CD (2022) Antibiotic use in livestock and residues in food-A public health threat: A review. Foods, 11(10), 1430. https://doi.org/10.3390/foods11101430.
  15. Chen J, Ying GG, Deng WJ (2019) Antibiotic residues in food: Extraction, analysis, and human health concerns. Journal of Agricultural and Food Chemistry, 67(27), 7569-7586. https://doi.org/10.1021/acs.jafc.9b01334.
  16. Jiang Q, Feng M, Ye C, Yu X (2022) Effects and relevant mechanisms of non-antibiotic factors on the horizontal transfer of antibiotic resistance genes in water environments: A review. Science of The Total Environment, 806, 150568. https://doi.org/10.1016/j.scitotenv.2021.150568.
  17. Von Wintersdorff CJ, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen L B, Savelkoul PH, Wolffs PF (2016) Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology, 7, 173. https://doi.org/10.3389/fmicb.2016.00173.
  18. Christie PJ, Vogel JP (2000) Bacterial type IV secretion: Conjugation systems adapted to deliver effector molecules to host cells. Trends in Microbiology, 8(8), 354-360. https://doi.org/10.1016/S0906_842X(00)01792_3.
  19. Cochrane RR, Shrestha A, Severo de Almeida MM, Agyare-Tabbi M, Brumwell SL, Hamadache S, Meaney JS, Nucifora DP, Say HH et al. (2022) Superior conjugative plasmids delivered by bacteria to diverse fungi. BioDesign Research, 2022, 9802168. https://doi.org/10.34133/2022/9802168.
  20. Xiao X, Zeng F, Li R, Liu Y, Wang Z (2022) Subinhibitory concentration of colistin promotes the conjugation frequencies of mcr-1-and bla NDM-5-positive plasmids. Microbiology Spectrum, 10(2), e02160-21. https://doi.org/10.1128/spectrum.02160-21.
  21. Lekagul A, Tangcharoensathien V, Yeung S (2019) Patterns of antibiotic use in global pig production: A systematic review. Veterinary and Animal Science, 7, 100058. https://doi.org/10.1016/j.vas.2019.100058.
  22. Clinical & Institute LS (2017) Performance standards for antimicrobial susceptibility testing, pp. 106-112, Clinical and Laboratory Standards Institute Wayne, USA.
  23. Ward Jr JH (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236-244. https://doi.org/10.1080/01621459.1963.10500845.
  24. Shen W, Le S, Li Y, Hu F (2016) SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PloS One, 11(10), e0163962. https://doi.org/10.1371/journal.pone.0163962.
  25. Kolmogorov M, Yuan J, Lin Y, Pevzner PA (2019) Assembly of long, error-prone reads using repeat graphs. Nature Biotechnology, 37(5), 540-546. https://doi.org/10.1038/s41587-019-0072-8.
  26. Pellow D, Mizrahi I, Shamir R (2020) PlasClass improves plasmid sequence classification. PLoS Computational Biology, 16(4), e1007781. https://doi.org/10.1371/journal.pcbi.1007781.
  27. Robertson J, Nash JH (2018) MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microbial Genomics, 4(8), e000206. https://doi.org/10.1099/mgen.0.000206.
  28. Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 1-11. https://doi.org/10.1186/1471-2105-11-119.
  29. Buchfink B, Reuter K, Drost HG (2021) Sensitive protein alignments at tree-of-life scale using DIAMOND. Nature Methods, 18(4), 366-368. https://doi.org/10.1038/s41592-021-01101-x.
  30. Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, Huynh W, Nguyen ALV, Cheng AA et al. (2020) CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48(D1), D517-D525. https://doi.org/10.1093/nar/gkz935.
  31. Seemann T (2014) Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30(14), 2068-2069. https://doi.org/10.1093/bioinformatics/btu153.
  32. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: A genome comparison visualizer. Bioinformatics, 27(7), 1009-1010. https://doi.org/10.1093/bioinformatics/btr039.
  33. San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC (2016) Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nature Ecology & Evolution, 1(1), 0010. https://doi.org/10.1038/s41559-016-0010.
  34. Van Gompel L, Luiken RE, Hansen RB, Munk P, Bouwknegt M, Heres L, Greve GD, Scherpenisse P, Jongerius-Gortemaker BG et al. (2020) Description and determinants of the faecal resistome and microbiome of farmers and slaughterhouse workers: A metagenome-wide cross-sectional study. Environment International, 143, 105939. https://doi.org/10.1016/j.envint.2020.105939.
  35. Chang Q, Wang W, Regev-Yochay G, Lipsitch M, Hanage WP (2015) Antibiotics in agriculture and the risk to human health: how worried should we be?. Evolutionary Applications, 8(3), 240-247. https://doi.org/10.1111/eva.12185.
  36. Gao FZ, He LY, He LX, Zou HY, Zhang M, Wu DL, Liu YS, Shi YJ, Bai H et al. (2020) Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables. Science of the Total Environment, 741, 140482. https://doi.org/10.1016/j.scitotenv.2020.140482.
  37. Monger XC, Gilbert AA, Saucier L, Vincent AT (2021) Antibiotic resistance: From pig to meat. Antibiotics, 10(10), 1209. https://doi.org/10.3390/antibiotics10101209.
  38. Blanc DS, Magalhaes B, Koenig, I, Senn L, Grandbastien B (2020) Comparison of whole genome (wg-) and core genome (cg-) MLST (BioNumericsTM) versus SNP variant calling for epidemiological investigation of Pseudomonas aeruginosa. Frontiers in Microbiology, 11, 1729. https://doi.org/10.3389/fmicb.2020.01729.
  39. Smillie C, Garcillan-Barcia MP, Francia MV, Rocha EP, de la Cruz F (2010) Mobility of plasmids. Microbiology and Molecular Biology Reviews, 74(3), 434-452. https://doi.org/10.1128/mmbr.00020-10.
  40. Ruppe E, Cherkaoui A, Lazarevic V, Emonet S, Schrenzel J (2017) Establishing genotype-to-phenotype relationships in bacteria causing hospital-acquired pneumonia: A prelude to the application of clinical metagenomics. Antibiotics, 6(4), 30. https://doi.org/10.3390/antibiotics6040030.
  41. Gonzalez-Santamarina B, Garcia-Soto S, Dang-Xuan S, Abdel-Glil MY, Meemken D, Fries R, Tomaso H (2021) Genomic characterization of multidrug-resistant salmonella serovars derby and rissen from the pig value chain in Vietnam. Frontiers in Veterinary Science, 8, 705044. https://doi.org/10.3389/fvets.2021.705044.
  42. Moran RA, Anantham S, Holt KE, Hall RM (2017) Prediction of antibiotic resistance from antibiotic resistance genes detected in antibiotic-resistant commensal Escherichia coli using PCR or WGS. Journal of Antimicrobial Chemotherapy, 72(3), 700-704. https://doi.org/10.1093/jac/dkw511.