Browse > Article
http://dx.doi.org/10.7845/kjm.2016.6048

Identification of three pathways for p-cresol catabolism and their gene expression in Pseudomonas alkylphenolica KL28  

Sung, Jin Il (Department of Bio Health Science, Changwon National University)
Lee, Kyoung (Department of Bio Health Science, Changwon National University)
Publication Information
Korean Journal of Microbiology / v.52, no.3, 2016 , pp. 298-305 More about this Journal
Abstract
Previously our laboratory showed that Pseudomonas alkylphenolica KL28 possesses two different lap and pcu gene clusters for p-cresol catabolism. In this study, additional gene cluster (pchACXF-pcaHG-orf4-pcaBC) has been identified to encode enzymes necessary for catabolism of p-cresol to ${\beta}$-carboxy-cis,cis-muconate. This gene cluster showed almost identical nucleotide sequence homologies to those in the plasmid of Pseudomonas putida NCIMB 9866 and 9869, British origins, indicating the possibility of a horizontal gene transfer. Through mutagenesis of each gene cluster and gfp-based promoter reporter assays, it has been shown that the three gene clusters are functionally operated and pch genes are induced by p-cresol. Furthermore, the pcu gene cluster of the three was shown to be dominantly expressed in utilization of p-cresol. Mutation of the pcu gene was defective in aerial structure formation under p-cresol vapor, indicating the utilization rate of carbon source is one of key elements for the multicellular development of this strain.
Keywords
Pseudomonas alkylphenolica; catabolism; p-cresol; isoenzyme;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145, 69-73.   DOI
2 Shingler, V., Powlowski, J., and Marklund, U. 1992. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174, 711-724.   DOI
3 Stanier, R.Y., Palleroni, N.J., and Doudoroff, M. 1966. The aerobic pseudomonads: a taxomonic study. J. Gen. Microbiol. 43, 159-271.   DOI
4 Veeranagouda, Y., Basavaraja, C., Bae, H.S., Liu, K.H., and Lee, K. 2011. Augmented production of poly-${\beta}$-D-mannuronate and its acetylated forms by Pseudomonas. Process Biochem. 46, 328-334.   DOI
5 Veeranagouda, Y., Lee, K., Cho, A.R., Cho, K., Anderson, E.M., and Lam, J.S. 2011. Ssg, a putative glycosyltransferase, functions in lipo-and exopolysaccharide biosynthesis and cell surface-related properties in Pseudomonas alkylphenolia. FEMS Microbiol. Lett. 315, 38-45.   DOI
6 Veeranagouda, Y., Lim, E.J., Kim, D.W., Kim, J.K., Cho, K., Heipieper, H.J., and Lee, K. 2009. Formation of specialized aerial architectures by Rhodococcus during utilization of vaporized p-cresol. Microbiology 155, 3788-3796.   DOI
7 Wright, A. and Olsen, R.H. 1994. Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl. Environ. Microbiol. 60, 235-242.
8 Chang, A.C. and Cohen, S.N. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134, 1141-1156.
9 Yan, Z., Wei, X., Yuan, Y., Li, Z., Li, D., Liu, X., and Gao, L. 2016. Deodorization of pig manure using lignin peroxidase with different electron acceptors. J. Air Waste Manag. Assoc. 66, 420-428.   DOI
10 Yun, J.I., Cho, K.M., Kim, J.K., Lee, S.O., Cho, K., and Lee, K. 2007. Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m-cresol and changes its surface-related phenotypes. FEMS Microbiol. Lett. 269, 97-103.   DOI
11 Chen, Y.F., Chao, H., and Zhou, N.Y. 2014. The catabolism of 2,4-xylenol and p-cresol share the enzymes for the oxidation of para-methyl group in Pseudomonas putida NCIMB 9866. Appl. Microbiol. Biotechnol. 98, 1349-1356.   DOI
12 Cho, J.H., Jung, D.K., Lee, K., and Rhee, S. 2009. Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. J. Biol. Chem. 284, 34321-34330.   DOI
13 Cho, A.R., Lim, E.J., Veeranagouda, Y., and Lee, K. 2011. Identification of a p-cresol degradation pathway by a GFP-based transposon in Pseudomonas and its dominant expression in colonies. J. Microbiol. Biotechnol. 21, 1179-1183.   DOI
14 Jeong, J.J., Kim, J.H., Kim, C.K., Hwang, I., and Lee, K. 2003. 3-and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149, 3265-3277.   DOI
15 Cunane, L.M., Chen, Z.W., Shamala, N., Mathews, F.S., Cronin, C.N., and McIntire, W.S. 2000. Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: gated substrate entry and proton relays support the proposed catalytic mechanism. J. Mol. Biol. 295, 357-374.   DOI
16 Dagley, S. and Patel, M.D. 1957. Oxidation of p-cresol and related compounds by a Pseudomonas. Biochem. J. 66, 227-233.   DOI
17 Dennis, J.J. and Zylstra, G.J. 1998. Plasposons: modular self-cloning minitransposon derivatives for rapid genetic analysis of gramnegative bacterial genomes. Appl. Environ. Microbiol. 64, 2710-2715.
18 Bayly, R.C., Dagley, S., and Gibson, D.T. 1966. The metabolism of cresols by species of Pseudomonas. Biochem. J. 101, 293-301.   DOI
19 Chang, M.C., Chang, H.H., Chan, C.P., Yeung, S.Y., Hsien, H.C., Lin, B.R., Yeh, C.Y., Tseng, W.Y., Tseng, S.K., and Jeng, J.H. 2014. p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS One 9, e114446.   DOI
20 Joesaar, M., Heinaru, E., Viggor, S., Vedler, E., and Heinaru, A. 2010. Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol. Ecol. 72, 464-475.   DOI
21 Kim, J., Fuller, J.H., Cecchini, G., and McIntire, W.S. 1994. Cloning, sequencing, and expression of the structural genes for the cytochrome and flavoprotein subunits of p-cresol methylhydroxylase from two strains of Pseudomonas putida. J. Bacteriol. 176, 6349-6361.   DOI
22 Li, D., Yan, Y., Ping, S., Chen, M., Zhang, W., Li, L., Lin, W., Geng, L., Liu, W., Lu, W., and Lin, M. 2010. Genome-wide investigation and functional characterization of the beta-ketoadipate pathway in the nitrogen-fixing and root-associated bacterium Pseudomonas stutzeri A1501. BMC Microbiol. 10, 36.   DOI
23 Kim, J.Y., Kim, J.K., Lee, S.O., Kim, C.K., and Lee, K. 2005. Multicomponent phenol hydroxylase-catalysed formation of hydroxyindoles and dyestuffs from indole and its derivatives. Lett. Appl. Microbiol. 41, 163-168.   DOI
24 Kukor, J.J. and Olsen, R.H. 1992. Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J. Bacteriol. 174, 6518-6526.   DOI
25 Lee, K. 2013. Construction of overexpression vectors and purification of the oxygenase component of alkylphenol hydroxylase of Pseudomonas alkylphenolia. Korean J. Microbiol. 49, 95-98.   DOI
26 Lee, K., Lim, E.J., Kim, K.S., Huang, S.L., Veeranagouda, Y., and Rehm, B.H. 2014. An alginate-like exopolysaccharide biosynthesis gene cluster involved in biofilm aerial structure formation by Pseudomonas alkylphenolia. Appl. Microbiol. Biotechnol. 98, 4137-4148.   DOI
27 Lee, K. and Veeranagouda, Y. 2009. Ultramicrocells form by reductive division in macroscopic Pseudomonas aerial structures. Environ. Microbiol. 11, 1117-1125.   DOI
28 Miller, W.G., Leveau, J.H., and Lindow, S.E. 2000. Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant Microbe Interact. 13, 1243-1250.   DOI
29 Mulet, M., Sanchez, D., Lalucat, J., Lee, K., and Garcia-Valdes, E. 2015. Pseudomonas alkylphenolica sp. nov., a bacterial species able to form special aerial structures when grown on p-cresol. Int. J. Syst. Evol. Microbiol. 65, 4013-4018.   DOI
30 Naessens, M. and Vandamme, E.J. 2003. Multiple forms of microbial enzymes. Biotechnol. Lett. 25, 1119-1124.   DOI