• Title/Summary/Keyword: plasma surface cleaning

Search Result 100, Processing Time 0.018 seconds

Characterization of Membrane Fouling and It's Optimal Chemical Cleaning Method in MF Process using D dam water (D댐수를 이용한 정밀여과 공정에서 막오염 특성 및 최적 화학세정방법 조사)

  • Kim, Chung H.;Lim, Jae L.;Lee, Byung G.;Chae, Seon H.;Park, Min G.;Park, Sang H.
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.559-569
    • /
    • 2007
  • The purposes of this study were to find the main foulant of membrane and the optimal chemical cleaning method for MF(microfiltration) drinking water treatment system using D dam water as water source. The MF pilot plant which can treat maximum $500m^3/d$ consisted of 3 racks and was operated for 10 months under various operation conditions. After 10 months operation, $1^{st}$ and $2^{nd}$ rack of membrane pilot plant system were cleaned chemically and the degree of the restoration of the fouled membrane in terms of the pure water flux was detemnined. Inorganic compounds which contained in chemical cleaning waste was analyzed by Inductively Coupled Plasma (ICP). One membrane module for 3rd rack was disjointed and membrane fouling materials, especially inorganic compounds were investigated by Electron Probe Microanlysis (EPMA) to elucidate the reason of TMP increase. And also, the various chemical reagents (1N HCl or $H_2SO_4$, oxalic acid as acid and 0.3% NaOCl as alkali) were tested by combination of acid and alkali to determine the optimal chemical cleaning method for the MF system using micro-modules manufactured using the disjointed module. It was verified that the inside and outside of membrane module was colorized with black. As a result of the quantitative and semi-qualitative analysis of membrane foulant by ICP, most of inorganic foulant was manganese which is hard to remove by inorganic acid such as HCI. Especially, it was observed by EPMA that Mn was attached more seriously in inside surface of membrane than in outside surface of that. It was supposed that Mn fouling in inside surface of membrane might be caused by the oxidation of soluble manganese (Mn(II)) to insoluble manganese ($MnO_2$) by chlorine containing in backwashing water. The optimal cleaning method for the removal of manganese fouling was consecutive cleaning with the mixture of 1N HCl and 1% of oxalic acid, 0.3% NaOCl, and 1N HCl showing 91% of the restoration of the fouled membrane.

A Study on Etching of $UO_2$, Co, and Mo Surface with R.F. Plasma Using $CF_4\;and\;O_2$

  • Kim Yong-Soo;Seo Yong-Dae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.507-514
    • /
    • 2003
  • Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability of this new dry processing technique are experimentally investigated by examining the etching reaction of $UO_2$, Co, and Mo in r.f. plasma with the etchant gas of $CF_4/O_2$ mixture. $UO_2$ is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds while metallic Co and Mo are selected because they are the principal contaminants in the used metallic nuclear components such as valves and pipes made of stainless steel or inconel. Results show that in all cases maximum etching rate is achieved when the mole fraction of $UO_2\;in\;CF_4/O_2$ mixture gas is $20\%$, regardless of temperature and r.f. power. In case of $UO_2$, the highest etching reaction rate is greater than 1000 monolayers/min. at $370^{\circ}C$ under 150 W r.f. power which is equivalent to $0.4{\mu}m/min$. As for Co, etching reaction begins to take place significantly when the temperature exceeds $350^{\circ}C$. Maximum etching rate achieved at $380^{\circ}C\;is\;0.06{\mu}m/min$. Mo etching reaction takes place vigorously even at relatively low temperature and the reaction rate increases drastically with increasing temperature. Highest etching rate at $380^{\circ}C\;is\;1.9{\mu}m/min$. According to OES (Optical Emission Spectroscopy) and AES (Auger Electron Spectroscopy) analysis, primary reaction seems to be a fluorination reaction, but carbonyl compound formation reaction may assist the dominant reaction, especially in case of Co and Mo. Through this basic study, the feasibility and the applicability of plasma decontamination technique are demonstrated.

Dielectric Surface Treatment Effects on Organic Thin-film Transistors (유기반도체 트랜지스터의 유전체 표면처리 효과)

  • Lim Sang Chul;Kim Seong Hyun;Lee Jung Hun;Ku Chan Hoe;Kim Dojin;Zyung Taehyong
    • Korean Journal of Materials Research
    • /
    • v.15 no.3
    • /
    • pp.202-208
    • /
    • 2005
  • The surface states of gate dielectrics affect device performance severely in Pentacene OTFTs. We have fabricated organic thin-film transistors (OTFTs) using pentacene as an active layer with chemically modified $SiO_2$ gate dielectrics. The effects of the surface treatment of $SiO_2$ on the electric characteristics of OTFTS were investigated. The surface of $SiO_2$ gate dielectric was treated by normal wet cleaning process, $O_2-plasma$ treatment, hexamethyldisilazane (HMDS), and octadecyltrichlorosilane (OTS) treatment. After the surface treatments, the contact angles and surface free energies were measured in order to analyze the surface state changes. In the electrical measurements, typical I-V characteristics of TFTs were observed. The field effect mobility, $\mu$, was calculated to be $0.29\;cm^2V^{-1}s^{-1}$ for OTS treated sample while those for the HMDS, $O_2$ plasma treated, and wet-cleaned samples were 0.16, 0.1, and $0.04\;cm^2V^{-1}s^{-1}$, respectively.

Removal of Fe Impurities on Silicon Surfaces using Remote Hydrogen Plasma (리모트 수소 플라즈마를 이용한 Si 표면 위의 Fe 불순물 제거)

  • Lee, C.;Park, W.;Jeon, B.Y.;Jeon, H.T.;Ahn, T.H.;Back, J.T.;Shin, K.S.;Lee, D.H.
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.751-756
    • /
    • 1998
  • Effects of remote hydrogen plasma cleaning process parameters on the removal of Fe impurities on Si surfaces and the Fe removal mechanism were investigated. Fe removal efficiency is enhanced with decreasing the plasma exposure time and increasing the rf-power. The optimum plasma exposure time and rf-power are 1 min and 100W. respectively, in the range below 10 min and 100W. Fe removal efficiency is better under lower pressures than higher pressures, and the optimum $\textrm{H}_2$ flow rate was found to be 20 and 60sccm, respectively, under a low and a high pressure. The post-RHP(remote hydrogen plasma) annealing enhanced metallic contaminants removal efficiency, and the highest efficiency was achieved at $600^{\circ}C$. According to the AFM analysis results Si surface roughness was improved by 30-50%, which seems to be due to the removal of particles by the plasma cleaning. Also. Fe impurities removal mechanisms by remote hydrogen plasma are discussed.

  • PDF

Plasma source ion implantations for shallow $p^+$/n junction

  • Jeonghee Cho;Seuunghee Han;Lee, Yeonhee;Kim, Lk-Kyung;Kim, Gon-Ho;Kim, Young-Woo;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.180-180
    • /
    • 2000
  • Plasma source ion implantation is a new doping technique for the formation of shallow junction with the merits of high dose rate, low-cost and minimal wafer charging damage. In plasma source ion implantation process, the wafer is placed directly in the plasma of the appropriate dopant ions. Negative pulse bias is applied to the wafer, causing the dopant ions to be accelerated toward the wafer and implanted below the surface. In this work, inductively couples plasma was generated by anodized Al antenna that was located inside the vacuum chamber. The outside wall of Al chamber was surrounded by Nd-Fe-B permanent magnets to confine the plasma and to enhance the uniformity. Before implantation, the wafer was pre-sputtered using DC bias of 300B in Ar plasma in order to eliminate the native oxide. After cleaning, B2H6 (5%)/H2 plasma and negative pulse bias of -1kV to 5 kV were used to form shallow p+/n junction at the boron dose of 1$\times$1015 to 5$\times$1016 #/cm2. The as-implanted samples were annealed at 90$0^{\circ}C$, 95$0^{\circ}C$ and 100$0^{\circ}C$during various annealing time with rapid thermal process. After annealing, the sheet resistance and the junction depth were measured with four point probe and secondary ion mass spectroscopy, respectively. The doping uniformity was also investigated. In addition, the electrical characteristics were measured for Schottky diode with a current-voltage meter.

  • PDF

Suppression of Switching Noise in a Quantum Device Based on GaAs/AlxGa1-xAs Two Dimensional Electron Gas System (GaAs/AlxGa1-xAs 이차원 전자계 기반 양자소자의 Switching Noise 억제)

  • Oh, Y.;Seo, M.;Chung, Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.151-157
    • /
    • 2012
  • The two dimensional electron gas system based on GaAs/$Al_xGa_{1-x}As$ heterostructure is widely used for fabricating quantum structures such as quantum dot, quantum point contact, electron interferometer and so on. However the conductance of the device is usually unstable due to the presence of random telegraph noise in the device. To overcome such problem, we have studied the effect of surface state on the stability of the device by altering the surface state of the device with oxygen plasma. The dramatic improvement of the device stability has been observed after cleaning the device surface with oxygen plasma (by 50 W~120 W plasma power) for 30 sec followed by etching in HCl : $H_2O$ (1 : 3) solution.

Structure & Mechanical Behavior of TiCN Thin Films by rf Plasma Deposition (RF Plasma법으로 증착된 TiCN박막의 구조 및 기계적 거동에 관한 연구)

  • Baeg, C.H.;Park, S.Y.;Hong, J.W.;Wey, M.Y.;Kang, H.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.2
    • /
    • pp.91-97
    • /
    • 2000
  • The structure and mechanical properties of TiN and TiCN thin films deposited on STD61 steel substrates by the RF-sputtering methods has been studied by using XPS, XRD, micro-hardness tester, scratch tester, and wear-resistance tester. XPS results showed that the TiCN thin film formed with chemical bonding state. The TiN thin films grew with (111) orientation having the lowest strain energy by compressive stress, whereas the TiCN thin films grew with both (111) and (200) orientation, but (200) orientation having the lowest surface energy becomes dominant as carbon contents increase. The pre-etching treatment of substrate did not affect on the preferred orientation of thin films, but it played an important role in improving mechanical properties of thin films such as the hardness, adhesion and wear- resistance. Especially, the TiCN thin films showed the superior wear resistances due to high hardness and low friction coefficient compared with TiN thin films.

  • PDF

A Study on Modified Silicon Surface after $CHF_3/C_2F_6$ Reactive Ion Etching

  • Park, Hyung-Ho;Kwon, Kwang-Ho;Lee, Sang-Hwan;Koak, Byung-Hwa;Nahm, Sahn;Lee, Hee-Tae;Kwon, Oh-Joon;Cho, Kyoung-Ik;Kang, Young-Il
    • ETRI Journal
    • /
    • v.16 no.1
    • /
    • pp.45-57
    • /
    • 1994
  • The effects of reactive ion etching (RIE) of $SiO_2$ layer in $CHF_3/C_2F_6$ on the underlying Si surface have been studied by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometer, Rutherford backscattering spectroscopy, and high resolution transmission electron microscopy. We found that two distinguishable modified layers are formed by RIE : (i) a uniform residue surface layer of 4 nm thickness composed entirely of carbon, fluorine, oxygen, and hydrogen with 9 different kinds of chemical bonds and (ii) a contaminated silicon layer of about 50 nm thickness with carbon and fluorine atoms without any observable crystalline defects. To search the removal condition of the silicon surface residue, we monitored the changes of surface compositions for the etched silicon after various post treatments as rapid thermal anneal, $O_2$, $NF_3$, $SF_6$, and $Cl_2$ plasma treatments. XPS analysis revealed that $NF_3$ treatment is most effective. With 10 seconds exposure to $NF_3$ plasma, the fluorocarbon residue film decomposes. The remained fluorine completely disappears after the following wet cleaning.

  • PDF

Performance and Stability Enhancement of Organic Solar Cells by Surface Treatment Processes of Transparent Electrodes (표면 전처리 공정에 따른 투명전극 계면 특성 변화와 유기 태양전지 성능 및 안정성 향상)

  • Lee, Kwan-Yong;Kim, Do-Hyun;Park, Sun-Joo;Kim, Young-Joo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.9 no.2
    • /
    • pp.42-47
    • /
    • 2013
  • In this study, we have experimentally analyzed how the surface properties of transparent electrode layer influence the photovoltaic performance of bulk heterojunction organic solar cell by the contact angle measurement and X-ray photoelectron spectroscopy(XPS) observation. As a result, the power conversion efficiency of test devices improved from 0.64% to 1.83% and 2.15% by UV-ozone exposure and $O_2$ plasma treatment, respectively. Thus, we conclude that the surface activation process is very important for better performance and stability in addition to the cleaning process of carbonate residue on the surface.