A Study on Etching of $UO_2$, Co, and Mo Surface with R.F. Plasma Using $CF_4\;and\;O_2$

  • Published : 2003.12.01

Abstract

Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability of this new dry processing technique are experimentally investigated by examining the etching reaction of $UO_2$, Co, and Mo in r.f. plasma with the etchant gas of $CF_4/O_2$ mixture. $UO_2$ is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds while metallic Co and Mo are selected because they are the principal contaminants in the used metallic nuclear components such as valves and pipes made of stainless steel or inconel. Results show that in all cases maximum etching rate is achieved when the mole fraction of $UO_2\;in\;CF_4/O_2$ mixture gas is $20\%$, regardless of temperature and r.f. power. In case of $UO_2$, the highest etching reaction rate is greater than 1000 monolayers/min. at $370^{\circ}C$ under 150 W r.f. power which is equivalent to $0.4{\mu}m/min$. As for Co, etching reaction begins to take place significantly when the temperature exceeds $350^{\circ}C$. Maximum etching rate achieved at $380^{\circ}C\;is\;0.06{\mu}m/min$. Mo etching reaction takes place vigorously even at relatively low temperature and the reaction rate increases drastically with increasing temperature. Highest etching rate at $380^{\circ}C\;is\;1.9{\mu}m/min$. According to OES (Optical Emission Spectroscopy) and AES (Auger Electron Spectroscopy) analysis, primary reaction seems to be a fluorination reaction, but carbonyl compound formation reaction may assist the dominant reaction, especially in case of Co and Mo. Through this basic study, the feasibility and the applicability of plasma decontamination technique are demonstrated.

Keywords

References

  1. USAEC Report ANL-5924 (1958)
  2. W. J. Mecham, J.D. Gabor, and A.A. Jonke, Chem. Eng. Progr. Symp. Ser. 60, 47 (1964) 76
  3. A.A. Jonke, Atomic Energy Rev., 3 (1965) 3
  4. L.J. Anastasia and W.J. Mecham, I & EC Process Design Devel., 4 (1965) 338 https://doi.org/10.1021/i260015a021
  5. T. Yahata and M. Iwasaki, J. Inorg. Nucl. Chem., 26 (1964) 1863 https://doi.org/10.1016/0022-1902(64)80010-5
  6. G. Vandenbussche, CEA-R 2859 (1966)
  7. M. Iwasaki, J. Nucl. Mater., 25 (1968) 216 https://doi.org/10.1016/0022-3115(68)90046-9
  8. J.C. Batty and R.E. Stickney, J. Chem. Phys., 51 (1969) 4475 https://doi.org/10.1063/1.1671814
  9. B. Weber and A. Cassuto, Surf. Sci., 39 (1973) 83 https://doi.org/10.1016/0039-6028(73)90096-4
  10. A.J. Machiels and D.R. Olander, High Temp. Sci., 9 (1977) 3
  11. H. Keil, P. Boczar, and H.S. Park, Proc. Intern. Conf. Tech. Expo. on Future Nuclear Systems, Global '93, Seattle, Washington, USA (Sept. 12-17, 1993)733
  12. M.S. Yang, Y.W. Lee, K.K. Bae, and S.H. Na, Proc. Intern. Conf. Tech. Expo. on Future Nuclear Systems, Global '93, Seattle, Washington, USA (Sept. 12-17, 1993) 740
  13. Y. Kim, J. Min, K. Bae, M. Yang, J. Lee, and H. Park, Proc. Intern. Conf. On Future Muclear Systems, Global '97, Yokohama, Japan (Oct. 5-10, 1997)1148
  14. Y.S. Kim, J.Y. Min, K.K. Bae, and M.S. Yang, J. Nuclear Mater., 270 (1999) 253 https://doi.org/10.1016/S0022-3115(98)00906-4
  15. J. C. Martz, D. W. Hess, and W. E. Anderson, J. Appl. Phys., 67 (1990) 3609 https://doi.org/10.1063/1.345313
  16. Y. Igarashi, T. Yamanobe, and T. Ito, J. Electrochem. Soc., 142 (1995) L36 https://doi.org/10.1149/1.2048577
  17. J. W. Lee, Y. D. Park, J. R. Childress, S. J. Pearton, F. Sharifi, and F. Ren, J. Electrochem. Soc., 145 (1998) 2585 https://doi.org/10.1149/1.1838685
  18. Y. Kuo and S. Lee, Jpn. J. Appl. Phys., 39 (2000) L188 https://doi.org/10.1143/JJAP.39.L188
  19. J. J. Barghusen, A. A. Jonke, N. M. Levitz, M. J. Steindler, and R. C. Vogel, Fluid-Bed Fluoride Volatility, Processing of Spent Fuel Reactor Materials, Progress in Nuclear Energy, Series III, Vol. 4, Process Chemistry, C. E. Stevenson, E. A. Mason, A. T. Gresky (eds.), Pergamon Press, (1970) 347