• Title/Summary/Keyword: plasma generator

Search Result 173, Processing Time 0.029 seconds

Disinfective Properties and Ozone Concentrations in Water and Air from an Ozone Generator and a Low-temperature Dielectric Barrier Discharge Plasma Generator (오존발생기와 저온 유전체장벽 플라즈마를 이용한 오존 발생 및 살균력)

  • Lee, Young Sik;Jeon, Hyoung-Joo;Han, Hyung-Gyun;Cheong, Cheong-Jo
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.937-944
    • /
    • 2013
  • Ozone concentrations in water and air, and resulting disinfective properties, were measured following generation by either an ozone generator or a low-temperature dielectric barrier discharge plasma generator. In freshwater, ozone concentrations of 0.81 and 0.48 mg/L $O_3$ were observed after the ozone and plasma generators had been operated for five minutes, respectively. Higher levels of dissolved $O_3$ were attained more easily with the ozone generator. In seawater, both systems were capable of creating concentrations greater than 3.00 mg/L $O_3$ after 5minutes of operation. Higher ozone levels were attained more easily in seawater than in freshwater. Rates of bacterial sterilization in seawater after three minutes were 96% and 88%, using the plasma and ozone generators, respectively. In freshwater, higher concentrations of ozone were released into the atmosphere by the ozone generator than by the plasma generator. In creating equivalent levels of dissolved ozone in freshwater, the plasma generator released 4.5 times more ozone into the atmosphere than did the ozone generator. This shows that ozone generators are more effective than plasma generators for creating ozonated water. For the same concentration of dissolved ozone in seawater, more ozone was released into the atmosphere using the ozone generator than using the plasma generator. Therefore, with regard to air pollution, plasma generators seem to be less expensive than ozone generators.

Occupational radiation exposure control analyses of 14 MeV neutron generator facility: A neutronic assessment for the biological and local shield design

  • Swami, H.L.;Vala, S.;Abhangi, M.;Kumar, Ratnesh;Danani, C.;Kumar, R.;Srinivasan, R.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1784-1791
    • /
    • 2020
  • The 14 MeV neutron generator facility is being developed by the Institute for Plasma Research India to conduct the lab scale experiments related to Indian breeding blanket system for ITER and DEMO. It will also be utilized for material testing, shielding experiments and development of fusion diagnostics. Occupational radiation exposure control is necessary for the all kind of nuclear facilities to get the operational licensing from governing authorities and nuclear regulatory bodies. In the same way, the radiation exposure for the 14 MeV neutron generator facility at the occupational worker area and accessible zones for general workers should be under the permissible limit of AERB India. The generator is designed for the yield of 1012 n/s. The shielding assessment has been made to estimate the radiation dose during the operational time of the neutron generator. The facility has many utilities and constraints like ventilation ducts, accessible doors, accessibility of neutron generator components and to conduct the experiments which make the shielding assessment challenging to provide proper safety for occupational workers and the general public. The neutron and gamma dose rates have been estimated using the MCNP radiation transport code and ENDF -VII nuclear data libraries. The ICRP-74 fluence to dose conversion coefficients has been used for the assessment. The annual radiation exposure has been assessed by considering 500 h per year operational time. The provision of local shield near to neutron generator has been also evaluated to reduce the annual radiation doses. The comprehensive results of radiation shielding capability of neutron generator building and local shield design have been presented in the paper along with detailed maps of radiation field.

Development of the Dielectric Barrier Discharge Plasma Generator for the Eco-friendly Cleaning Process of the Electronic Components (전자부품의 친환경 세정공정 적용을 위한 유전체장벽 방전 플라즈마 생성 장치 개발)

  • Son, Young-Su;Ham, Sang-Yong;Kim, Byung-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1217-1223
    • /
    • 2011
  • In this paper, the dielectric barrier discharge plasma generator has been studied for producing of the high concentration ozone gas. Proposed plasma generator has the structure of extremely narrow discharge air gap(0.15mm) in order to realize the high electric field discharge. We investigate the performance of the dielectric barrier discharge plasma generator experimentally and the results show that the generator has very high ozone concentration characteristics of 13.7[wt%/$O_2$] at the oxygen flow rate of 1[${\ell}$/min] of each discharge cell. So, we confirmed that the proposed plasma generator is suitable for the high concentration ozone production facility of the eco-friendly ozone functional water cleaning system in the electronic components cleaning process.

Analysis and Design of Resonant Inverter for Reactive Gas Generator Considering Characteristics of Plasma Load

  • Ahn, Hyo Min;Sung, Won-Yong;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.345-351
    • /
    • 2018
  • This paper analyzes a resonant inverter to generate plasma. The resonant inverter consists of a full bridge converter, resonant network and reactor to generate a magnetic field for plasma generation. A plasma load has very distinct characteristics compared to conventional loads. The characteristics of plasma load are analyzed through experimental results. This paper presents the study on the resonant network, which was performed in order to determine how to achieve a constant current gain. Another important contribution of this study is the analysis of drop-out phenomenon observed in plasma loads which is responsible for unpredictable shutdown of the plasma generator that requires stable operation. In addition, the design process for the resonant network of a plasma generator is proposed. The validity of this study is verified through simulations and experimental results.

Development of 30kW MF Generator for NF3 60 liter high capacity Remote Plasma Source (NF3 60 Liter급 대용량 Remote Plasma Source용 30kW MF Generator 개발)

  • Kim, Dae-Wook;Lim, Eun-Suk;Lee, Jong-Sik;Choi, Dae-Kyu;Choi, Sang-Don
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.51-52
    • /
    • 2013
  • 본 논문에서는 박막형 태양전지 및 LCD 제조공정에서 증착 공정 후 챔버 내부에 쌓이는 Si(실리콘)을 화학적으로 세정하기 위한 F(불소) RADICAL을 공급하는 원격 고밀도 플라즈마를 발생시키기 위한 고출력 Generator에 대해 소개하고자 한다. 개발되어진 Generator는 입력 직류전원을 공유하여 7kW급 단일 Power Amp Module의 상호결합 및 전력분담에 대한 편차 극복을 위한 기술과 고조파 저감비가 우수한 대전력 필터를 구현하였고, 크기 및 부피의 축소를 위하여 필터의 Q Factor의 극대화 기술이 적용되어졌다. 개발된 400kHz 30kW Generator는 NF3 60리터의 대용량 Remote Plasma Source의 리액터를 구동시킬 수 있으며, 38kW급 DC Link, 7kW급 Power Amp module, LC 필터, Controller로 구성되어 진다. 개발된 장치는 실제 플라즈마 공정에서 시험 평가한 결과를 통해 검증할 수 있었다.

  • PDF

Development of 8kW Variable Frequency RF Generator for 450mm CVD & 300mm F-CVD process (450mm 반도체 CVD 장비 및 300mm F-CVD 공정용 8kW급 주파수 가변형 RF Generator 개발)

  • Kim, Dae-Wook;Yang, Dae-Ki;An, Young-Oh;Lim, Eun-Suk;Choi, Dae-Kyu;Choi, Sang-Don
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.95-96
    • /
    • 2014
  • 450mm 반도체 CVD 장비 개발 및 300mm F-CVD (Flowable CVD) 공정 개발에 있어서 공정 마진 확보 및 막질 품질 개선을 위해 주파수 가변형 RF Generator가 필수적으로 요구되고 있다. 20nm이하 STI (Shallow Trench Isolation), PMD (Pre-metal Dielectric) & IMD (Inter-Metal Dielectric) 미세공정 gap fill에 많은 문제점이 도출되고 있으며, 이유로는 Generator 고정 주파수에서 Matching Time delay 또는 Shooting에 의한 산포의 한계로 파악되었으며, 주파수 가변에 의한 고속 Tune 기능이 요구되어진다. 따라서 400kHz 주파수 가변형 RF-Generator 개발을 진행하였으며 본 논문을 통해 개발되어진 장비의 성능과 시험 평가한 결과를 소개하고자 한다.

  • PDF

Analysis of Electromagnetic Wave Scattering Characteristics of Dielectric Barrier Discharge Plasma (유전체 장벽 방전 플라즈마의 전자파 산란 특성 분석)

  • Lee, Soo-Min;Oh, Il-Young;Hong, Yong-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.324-330
    • /
    • 2013
  • This paper presented measurement results of scattering characteristics of dielectric barrier discharge (DBD) plasma at atmospheric pressure. In this paper, plasma actuator is fabricated by parallel connecting of basic configuration of DBD plasma actuator, then plasma could be generated by applying 14 kV, 4 kHz of high voltage generator. In order to measure the scattering characteristics of DBD plasma, in this paper, two horn antennas and vector network analyzer are used to compare the S-parameter. Because of the structure of fabricated plasma generator, different result is obtained as antenna polarization changes. When antenna polarization is parallel to electrodes of plasma generator, the scattered field is reduced by 2 dB in maximum. In addition, for parallel polarization case, PEC is set up behind the plasma generator to measure backward scattered field. When the observation angles are $40^{\circ}C$ and $60^{\circ}C$, the amount of reduced scattered field is 2 dB in maximum at 5 GHz.

Stabilization of Plasma in a Three-Phase AC Plasma Generator (삼상 교류 플라즈마 발생의 안정화)

  • Lee, K.H.;Kim, K.S.;Lee, H.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.209-211
    • /
    • 2002
  • A simple-structured thermal plasma generator for waste gas treatment has been studied. The thermal plasma technology applied to waste treatment has undoubtedly gained high importance owing to its outstanding properties such as flexibility, compact reactor, and clean treatment. Moreover, the thermal plasma generated by ac power has some additional advantages such as simple electrode system and easy maintenance. A prototype 200kW class plasma generator with specifications of 10-30m/sec gas velocity and 3000-5000K temperature on the center just outside of the nozzle has been designed and tested. Case studies on heat transfer, heat flow, velocity distribution, and temperature distribution using a commercial simulation package show lots of flexibility in design. The experimental results from theprototype generator show that the ac thermal plasma is easily controlled by working gas flow once it is ignited. A stabilization condition is discussed with the data from monitoring arc voltage drops with respect to gas flow rate during the test.

  • PDF

A Study on the Removal of COD and Color to Wastewater Using Plasma Generator (플라즈마 장치를 이용한 폐수의 COD 및 색도 제거)

  • Yoon, Cheol-Hun;Lee, Han-Seob;Kim, Nack-Joo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.273-279
    • /
    • 2006
  • Water quality has been deteriorated by the increasing amount of industrial waste water that is due to the better standard of living. In order to lessen the polluted water and substantially reutilize it at factories, a new method is needed. The plasma generator, which uses discharge current below 1,500 voltage and processes at extremely low temperature, has more strong oxidization than current method and an advantage of miniaturizing the apparatus in dealing with waster water by producing carrier gas at room temperature. This study were measured on the 3 kinds of waster water to the plasma generator for 120 minutes. As results, COD was almost decreased and removed in 15 minutes. The results suggest that the plasma generator can be used reduce COD and removal of color for various waster water, which can be reutilized as industrial water, It would be of benefit to the country like Korea in which qualified water is deficient.