• Title/Summary/Keyword: plasma electronics

Search Result 777, Processing Time 0.107 seconds

A Study of the Dry Etching Properties of TiN Thin Film in He/BCl3/Cl2 Inductively Coupled Plasma (He/BCl3/Cl2유도결합 플라즈마를 이용한 TiN 박막의 식각 특성)

  • Woo, Jong-Chang;Joo, Young-Hee;Park, Jung-Soo;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.718-722
    • /
    • 2011
  • In this work, we investigated to the etching characteristics of the TiN thin film in He/$BCl_3/Cl_2$ plasma. The etch rate was measured by the gas mixing ratio, the RF power, the DC bias voltage and the process pressure. The maximum etch rate in He/$BCl_3/Cl_2$ plasma was 59 nm/min. The etch rate increased as the RF power and the DC-bias voltage was increased. The chemical reaction on the surface of the etched the TiN thin films was investigated with X-ray photoelectron spectroscopy (XPS). The intensity of Ti 2p and N 1s peaks are varied during etching process. A new peak was appeared in He/$BCl_3/Cl_2$ plasma. The new peak was revealed Ti-$Cl_x$ by Cl 2p peak of XPS wild scan spectra analysis.

Current Source Type Pulse Generator with Improved Output Voltage Waveform for High Voltage Capacitively Coupled Plasma System (고전압 용량성 결합 플라즈마 시스템의 개선된 전압 파형 출력을 위한 펄스 전류 발생장치 회로)

  • Chae, Beomseok;Min, Juhwa;Suh, Yongsug;Kim, Hyunbae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.153-160
    • /
    • 2019
  • This study proposes a current source-type pulse generator to improve output voltage and current waveforms under a capacitively coupled plasma (CCP) system. The proposed circuit comprises two parallel-connected current source-type converters. These converters can satisfy the required output waveforms of plasma processing. The parallel-connected converters operate without reverse current fault by applying a time-delay control technique. Conventional voltage source converters based on pulse power supply exhibit drawbacks in short-circuit current, and problems occur when they are applied to a CCP system. The proposed pulse power supply based on a current source converter fundamentally solves the short-circuit current problem. Therefore, this topology can improve the voltage and current accuracy of a CCP system.

Plasma Etching Characteristics of Sapphire Substrate using $BCl_3$-based Inductively Coupled Plasma ($BCl_3$ 계열 유도결합 플라즈마를 이용한 사파이어 기판의 식각 특성)

  • Kim, Dong-Pyo;Woo, Jong-Chang;Um, Doo-Seng;Yang, Xue;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.363-363
    • /
    • 2008
  • The development of dry etching process for sapphire wafer with plasma has been key issues for the opto-electric devices. The challenges are increasing control and obtaining low plasma induced-damage because an unwanted scattering of radiation is caused by the spatial disorder of pattern and variation of surface roughness. The plasma-induced damages during plasma etching process can be classified as impurity contamination of residual etch products or bonding disruption in lattice due to charged particle bombardment. Therefor, fine pattern technology with low damaged etching process and high etch rate are urgently needed. Until now, there are a lot of reports on the etching of sapphire wafer with using $Cl_2$/Ar, $BCl_3$/Ar, HBr/Ar and so on [1]. However, the etch behavior of sapphire wafer have investigated with variation of only one parameter while other parameters are fixed. In this study, we investigated the effect of pressure and other parameters on the etch rate and the selectivity. We selected $BCl_3$ as an etch ant because $BCl_3$ plasmas are widely used in etching process of oxide materials. In plasma, the $BCl_3$ molecule can be dissociated into B radical, $B^+$ ion, Cl radical and $Cl^+$ ion. However, the $BCl_3$ molecule can be dissociated into B radical or $B^+$ ion easier than Cl radical or $Cl^+$ ion. First, we evaluated the etch behaviors of sapphire wafer in $BCl_3$/additive gases (Ar, $N_2,Cl_2$) gases. The behavior of etch rate of sapphire substrate was monitored as a function of additive gas ratio to $BCl_3$ based plasma, total flow rate, r.f. power, d.c. bias under different pressures of 5 mTorr, 10 mTorr, 20 mTorr and 30 mTorr. The etch rates of sapphire wafer, $SiO_2$ and PR were measured with using alpha step surface profiler. In order to understand the changes of radicals, volume density of Cl, B radical and BCl molecule were investigated with optical emission spectroscopy (OES). The chemical states of $Al_2O_3$ thin films were studied with energy dispersive X-ray (EDX) and depth profile anlysis of auger electron spectroscopy (AES). The enhancement of sapphire substrate can be explained by the reactive ion etching mechanism with the competition of the formation of volatile $AlCl_3$, $Al_2Cl_6$ or $BOCl_3$ and the sputter effect by energetic ions.

  • PDF

A Study on Etching Characteristics of SnO2 Thin Films Using High Density Plasma (고밀도 플라즈마를 이용한 SnO2 박막의 건식 식각 특성)

  • Kim, Hwan-Jun;Joo, Young-Hee;Kim, Seung-Han;Woo, Jong-Chang;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.826-830
    • /
    • 2013
  • In this paper, we carried out the investigations of both etch characteristics and mechanisms for the $SnO_2$ thin films in $O_2/BCl_3/Ar$ plasma. The dry etching characteristics of the $SnO_2$ thin films was studied by varying the $O_2/BCl_3/Ar$ gas mixing ratio. We determined the optimized process conditions that were as follows: a RF power of 700 W, a DC-bias voltage of - 150 V, and a process pressure of 2 Pa. The maximum etch rate was 509.9 nm/min in $O_2/BCl_3/Ar$=(3:4:16 sccm) plasma. From XPS analysis, the etch mechanism of the $SnO_2$ thin films in the $O_2/BCl_3/Ar$ plasma can be identified as the ion-assisted chemical reaction while the role of ion bombardment includes the destruction of the metal-oxide bonds as well as the cleaning of the etched surface form the reaction products.

Dependence of $O_2$ Plasma Treatment of Cross-Linked PVP Insulator on the Electrical Properties of Organic-Inorganic Thin Film Transistors with ZnO Channel Layer

  • Gong, Su-Cheol;Shin, Ik-Sup;Bang, Suk-Hwan;Kim, Hyun-Chul;Ryu, Sang-Ouk;Jeon, Hyeong-Tag;Park, Hyung-Ho;Yu, Chong-Hee;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.21-25
    • /
    • 2009
  • The organic-inorganic thin film transistors (OITFTs) with ZnO channel layer and the cross-linked PVP (Poly-4-vinylphenol) gate insulator were fabricated on the patterned ITO gate/glass substrate. ZnO channel layer was deposited by using atomic layer deposition (ALD). In order to improve the electrical properties, $O_2$ plasma treatment onto PVP film was introduced and investigated the effect of the plasma treatments on the electrical properties of the OITFTs. The field effect mobility and sub-threshold slope (SS) values of the OITFT decreased slightly from 0.24 to 0.16 $cm^2/V{\cdot}s$ and from 9.7 to 9.2 V/dec, respectively with increasing RF power from 30 to 50 Watt. The $I_{on/off}$ ratio was about $10^3$ for all samples with $O_2$ plasma treatment.

  • PDF

UV emission characteristics of Ne+$N_2$ gas-mixture discharges in AC Plasma Display Panel

  • Baek, Byung-Jong;Hong, Sang-Min;Choi, Kyung-Cheol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.586-589
    • /
    • 2002
  • The Ultra Violet(UV) emission characteristics of Neon + Nitrogen gas-mixture discharge was investigated in AC plasma display panel. The firing voltage of Ne+$N_2$ gas-mixture discharge increased with increasing nitrogen concentration. The UV intensity emitted from the gas discharge also increased with increasing nitrogen concentration. The UV efficiency increase with increasing $N_2$ partial pressure at low $N_2$ concentration, and then UV efficiency is saturated at high $N_2$ concentration.

  • PDF

The Etching Characteristics of the TaN Thin Films Using Inductively Coupled Plasma (유도 결합 플라즈마를 이용한 TaN 박막의 건식 식각 특성)

  • Li, Chen;Joo, Young-Hee;Woo, Jong-Chang;Kim, Han-Soo;Choi, Kyung-Rok;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • In this paper, we investigated the etching characteristics of the TaN thin films and the surface reaction of TaN thin films after etching process. The etching characteristics of the TaN thin films were carried out using inductively coupled plasma (ICP). The etch rate and the selectivity of TaN to $SiO_2$ and TaN to PR were measured by varying the gas mixing ratio, RF power, DC-bias voltage, and process pressure in CF-based plasma. The surface reaction of TaN thin films were determined by x-ray photoelectron spectroscopy (XPS).

Etch characteristics of ZnO thin films using an inductively coupled plasma (유도결합 플라즈마를 이용한 ZnO 박막의 식각 특성)

  • Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Kyoung-Tae;Kim, Chang-Il;Kim, Dong-Pyo;Lee, Cheol-In;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.17-18
    • /
    • 2007
  • The etching characteristics of Zinc Oxide (ZnO) and etch selectivity of ZnO to $SiO_2\;in\;BCl_3$/Ar plasma were investigated. It was found that ZnO etch rate shows a non-monotonic behavior with increasing both Ar fraction in $BCl_3$ plasma, RF power, and gas pressure. The maximum ZnO etch rate of 50.3 nm/min was obtained for $BCl_3$ (80%)/Ar(20%) gas mixture. The plasmas were characterized using optical emission spectroscopy (OES) analysis measurements while chemical state of etched surfaces was investigated with X-ray photoelectron spectroscopy (XPS). From these data the suggestions on the ZnO etch mechanism were made.

  • PDF

Low Temperature Thermal Oxidation using ECR Oxygen Plasma (ECR 산소 플라즈마를 이용한 저온 열산화)

  • 이정열;강석원;이진우;한철희;김충기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.68-77
    • /
    • 1995
  • Characteristics of electron cyclotron resonance (ECR) plasma thermal oxide grown at low-temperature have been investigated. The effects of several process parameters such as substrate temperature, microwave power, gas flow rate, and process pressure on the growth rate of the oxide have been also investigated. It was found that the plasma density, reactive ion species, is strongly related to the growth rate of ECR plasma oxied. It was also found that the plasma density increases with microwave power while it decreases with decreasing O2 flow rate. The oxidation time dependence of the oxide thichness showed parabolic characteristics. Considering ECR plasma thermal oxidation at low-temperature, the linear as well as parabolic rate constants calculated from fitting data by using the Deal-Grove model was very large in comparison with conventional thermal oxidation. The ECR plasma oxide grown on (100) crystalline-Si wafer exhibited good electrical characteristics which are comparable to those of thermal oxide: fixed oxide charge(N$_{ff}$)= 7${\times}10^{10}cm^{-2}$, interface state density(N$_{it}$)=4${\times}10^[10}cm^{-2}eV^{-1}$, and breakdown field > 8MV/cm.

  • PDF

Application of the New Panel Structure for High Luminous Efficiency in AC-PDPs

  • Kim, Jae-Sung;Jeon, Chung-Huan;Lee, Eun-Cheol;Ahn, Young-Joon;Kang, Seok-Dong;Ahn, Sung-Yong;Shin, Young-Kyo;Ryu, Jae-Hwa;Schemerhorn, Jerry D.
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.32-34
    • /
    • 2000
  • A new PDP cell structure called CSP(Charge Storage Pad) improves the luminous efficiency by 1.6 times and prevents cross talk between adjacent cells. The CSP, which is a conducting material, is inserted between the dielectric layer and the MgO film in the front plate. This CSP produces a longer time-averaged discharge path to get a high luminous efficiency and confines the discharge to prevent cross talk.

  • PDF