• Title/Summary/Keyword: plantlets production

Search Result 107, Processing Time 0.025 seconds

Micropropagation of Tilia amurensis via Repetitive Secondary Somatic Embryogenesis

  • Kim, Tae-Dong;Choi, Yong-Eui;Lee, Byoung-Sil;Kim, Young-Joung;Kim, Tae-Su;Kim, In-Sik
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.243-248
    • /
    • 2006
  • A optimal procedure for plant production via repetitive secondary somatic embryogenesis in Tilia amurensis is described. Somatic embryos were induced directly from the culture of zygotic embryos on medium with 1.0 mg/l 2,4.-D. Repetitive secondary somatic embryos formed on the surface of the cotyledons and hypocotyls except for the radicles when explants of somatic embryos were cultured on medium with 4.0 mg/l 2,4-D. The highest frequency of secondary embryo-genesis was obtained in the cotyledons (90%) and hypocotyls(83.33%) on MS medium with 1.0 mg/L 2,4-D. The average number of secondary embryos per explant was 25.74 in cotyledon and 24.92 in hypocotyl. When the cotyledon and hypocotyl segments from somatic embryos at different developmental stages were cultured on MS medium with 1.0 mg/L 2,4-D, the highest frequency of secondary embryogenesis was obtained from late cotyledonary secondary embryos. Somatic embryos were transferred to MS basal medium and then they germinated within 2 to 4 weeks of culture. Germinated somatic embryos grew normally into plantlets on WPM medium, producing new shoots. The converted plantlets were acclimatized on artificial soil mixture. These results indicate that the repetitive secondary somatic embryogenesis in T amurensis can offer the possibility to use in vitro culture system for the micropropagation.

The Influence of Temperature Pretreatment on the Production of Microspore Embryos in Anther Culture of Capsicum annuum L. (고추 (Capsicum annuum L.)의 약배양 시 온도 전처리가 소포자배 발생에 미치는 영향)

  • 김문자
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.2
    • /
    • pp.71-76
    • /
    • 1999
  • Anthers of two hot pepper cultivars, Milyang-jare and Geryongsan-jare, were cultured on MS medium containing 0.1 mg/L 2,4-D and 0.1 mg/L kinetin. The influence of pretreatment at 4$^{\circ}C$ and 32$^{\circ}C$ on induction of microspore embryo was investigated. Milyang-jare was superior to the Geryongsan-jare in microspore embryo induction. The 32$^{\circ}C$ pretreatment increased embryo induction compared to the 4$^{\circ}C$ pretreatment while the 4$^{\circ}C$ pretreatment stimulated callus induction. Microspore embryos were regenerated to plantlets in the same medium or hormone free medium at 32$^{\circ}C$ treatment but most embryos failed to develop directly into plantlets at 4$^{\circ}C$ treatment. The optimal period of the 32$^{\circ}C$ pretreatment was 3 days in Milyang-jare and 6 days in Geryongsan-jare. The 32$^{\circ}C$ pretreatment was essential for induction and growth of microspore embryo in pepper.

  • PDF

Leaf-specific pathogenesis-related 10 homolog, PgPR-10.3, shows in silico binding affinity with several biologically important molecules

  • Han, Jin Haeng;Lee, Jin Hee;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.406-413
    • /
    • 2015
  • Background: Pathogenesis-related 10 (PR-10) proteins are small, cytosolic proteins with a similar three-dimensional structure. Crystal structures for several PR-10 homologs have similar overall folding patterns, with an unusually large internal cavity that is a binding site for biologically important molecules. Although structural information on PR-10 proteins is substantial, understanding of their biological function remains limited. Here, we showed that one of the PgPR-10 homologs, PgPR-10.3, shares binding properties with flavonoids, kinetin, emodin, deoxycholic acid, and ginsenoside Re (1 of the steroid glycosides). Methods: Gene expression patterns of PgPR-10.3 were analyzed by quantitative real-time PCR. The three-dimensional structure of PgPR-10 proteins was visualized by homology modeling, and docking to retrieve biologically active molecules was performed using AutoDock4 program. Results: Transcript levels of PgPR-10.3 expressed in leaves, stems, and roots of 3-wk-old ginseng plantlets were on average 86-fold lower than those of PgPR-10.2. In mature 2-yr-old ginseng plants, the mRNA of PgPR-10.3 is restricted to leaves. Ginsenoside Re production is especially prominent in leaves of Panax ginseng Meyer, and the binding property of PgPR-10.3 with ginsenoside Re suggests that this protein has an important role in the control of secondary metabolism. Conclusion: Although ginseng PR-10.3 gene is expressed in all organs of 3-wk-old plantlets, its expression is restricted to leaves in mature 2-yr-old ginseng plants. The putative binding property of PgPR-10.3 with Re is intriguing. Further verification of binding affinity with other biologically important molecules in the large hydrophobic cavity of PgPR-10.3 may provide an insight into the biological features of PR-10 proteins.

Virus free Healthy plant production through Meristem culture in carnation (Dianthus caryophillus) (생장점 배양에 의한 카네이션 무병주 생산)

  • 정재훈;김영선;은종선
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.331-338
    • /
    • 2004
  • This study was conducted to obtain the virus free plants through meristem culture of carnation (Dianthus caryophillus). Four cultivars (Roland, Desio, Casha, Giant Gipsy) were collected for materials. The apical meristem 0.3-0.5mm in size was cultured on MS medium containing 3% sucrose, 0.9% agar at pH 5.8 with various plant growth regulators for 7 weeks. Among the cultivars, Giant Gipsy had a better response than other cultivars in shoot formation and reduced vitrification. Callus induction and shoot formation from the meristem culture were influenced by the various kinds of cytokine. Kinetin supplement was the most effective for shoot formation and NAA addition was good for callus induction among the treatments. Total 115 plantlets derived from apical meristem culture were checked for CarMV and CarRSV infection by ELISA test. Among them, 40 plantlets (34.8%) were infected with CarMV but not detected for CarRSV.

Comparison of Bioactive Compounds and Antioxidant Activity according to Culture Systems in Artemisia fukudo

  • Eun Bi Jang;Jong-Du Lee;Hyejin Hyeon;Yong-Hwan Jung;Weon-Jong Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.99-99
    • /
    • 2022
  • Artemisia fukudo is a biennial plant and has been reported to have anticancer, anti-melanogenesis, and anti-inflammatory effects. However, it is difficult to produce biomass from A. fukudo, so it is not used as a material for cosmetics or pharmaceuticals. In vitro culture can stably produce biomass throughout the year. In this study, the culture system for producing the highest biomass and bioactive substances was compared. Ex vitro plants were collected in Pyoseon-eup, Jeju island in May 2021, and in vitro culture was harvested after culturing for 8 weeks (plantlet) and 4 weeks (adventitious roots), respectively. After harvest, total polyphenol content (TPC), total flavonoid content (TFC), and DPPH scavenging activity were analyzed. In biomass production, adventitious roots (FW: 5.1 g·100 ml-1, DW: 0.6 g·100 ml-1) were about 4 times higher than that of plantlets (FW: 1.8 g·200 ml-1, DW: 0.3 g·200 ml-1). Both TPC and TFC were highest in ex vitro plants (9.2 ㎍·mL-1, 31.6 ㎍·mL-1), and were 3.0 times and 1.8 times higher than those of plantlets (3.0 ㎍·mL-1, 17.8 ㎍·mL-1), respectively. The IC50 value of DPPH scavenging activity was also the best in ex vitro plants (69.8 ㎍·mL-1), followed by root root (184.4 ㎍·mL-1) and plants (325.3 ㎍·mL-1) in that order. Through additional elicitor treatment, scale-up, and advanced compounds analysis such as HPLC, it can be used as an industrial material.

  • PDF

Optimization of a protocol for the production of transgenic lily plants via particle bombardment (유전자총 실험조건 최적화를 통한 형질전환 백합 식물체 생산)

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • Transgenic lily plants have been obtained after particle bombardment, using PDS-1000/He system and scale explants of lilies, followed by PPT (D-L-phosphinothricin) selection. In this study, scales of the lily plants cv. 'red flame' were bombarded with a plasmid containing the bar gene as a selectable marker, and the AtSIZ gene as a gene of interest, showing salt tolerance and drought tolerance respectively, and both being driven by the CaMV 35S promoter. For optimization of a protocol, factors which optimized and showed a high transformation efficiency under following conditions, were considered: a bombardment pressure of 1100 psi, a target distance of 6 cm and $1.0{\mu}m$ of gold particle, and 24-h pre-culture and post-culture on MS medium containing 0.2 M sorbitol and 0.2 M mannitol as osmoticum agents. After bombardment, all the bombarded scales of lily were transferred to MS medium without selective agents, for a week. Subsequently, these bombarded scales were transferred to a selection MS medium containing 10 mg/l PPT, and incubated for a month for further selection, after which they were cultured for another 4-8 weeks with a 4-week subculture regime on the same selection medium. After transferring into hormone-free MS medium, the PPT-resistant scales with shoots were successfully rooted and regenerated into plantlets. PCR analysis revealed that the surviving putatively transformed plantlets indicated the presence of both the bar gene and the AtSIZ gene. In conclusion, when 100 scales of lily cv. Red flame are bombarded, this study produced approximately 17-18 transgenic plantlets with an optimized bombardment protocol. The protocol described here can contribute to the breeding program of lilies.

Micropropagation of an Endangered Species, Stellera rosea Nakai by Tissue Culture (멸종위기식물 피뿌리풀의 기내증식)

  • Han, Mu-Seok;Moon, Heung-Kyu;Kang, Young-Jae;Kim, Won-Woo;Kang, Byung-Seo;Byun, Kwang-Ok
    • Journal of Plant Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.31-35
    • /
    • 2004
  • In order to develop an efficient micropropagation technique for an endangered species, Stellera rosea N., stem node cultures were conducted on MS medium supplemented with cytokinins. Generally, BA was better than zeatin on shoot proliferation from stem nodes, whereas zeatin showed more effective on shoot elongation. In vitro rooting of shoots was achieved by application of an auxin pre-culturing method. Overall rooting rate was relatively low and differed depending on the culture period. Pre-culturing of shoots for 15 days at 1.0mg/L IBA revealed a slightly better rooting efficiency reaching 30% rooting rate than NAA. Root induction rate by NAA also varied with concentration of NAA and culture periods. Total 51% of the rooted plantlets survived on artificial soil mixture and grew normally without any distinct morphological variation. The results suggest that the endangered Stetllera plants are propagated via in vitro culture system, but still need to more study for the improvement of rooting and acclimatization of the plantlets in soil.

Plant regeneration from callus derived root of northen type in garlic (Allium sativum L.) (한지형 마늘에 있어서 기내뿌리로부터 식물체 재분화)

  • Ahn, Yul-Kyun;Kim, Do-Sun;Yoon, Moon-Kyoung
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.403-406
    • /
    • 2009
  • This study was conducted to develop an effective production of callus induction and plant regeneration system for garlic transformation. The best callus production occurred on in vitro root segment initially cultured on MS medium with 1.0 mg/L 2,4-D and 0.2 mg/L IAA in both ‘Danyang' and ‘Euseong'. The frequency of callus formation were 81.2% ‘Danyang' and 76.1% ‘Euseong'. Eight weeks after callus induction, callus lines were transferred to regeneration medium during 7 weeks. The best shoot regeneration medium was MS supplemented with 5 mg/L Kinetin and 1 mg/L NAA for ‘Danyang' and MS supplemented with 10 mg/L BAP for ‘Euseong'. The frequency of shoot regeneration were 51.5% ‘Danyang' and 56.6% ‘Euseong' The plantlets were acclimatized and transferred to the greenhouse with almost survival. This in vitro regeneration system should be useful for garlic transformation.

Production and Characteristics of Protoplasts in Green Sea Algae Capsosiphon fulvescens

  • Sun, Sangmi;Hwang, Misook;Chung, Gyuhwa
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.167-168
    • /
    • 2000
  • The potential application of protoplasts useful for studies such as physiology, morphology, genetic engineering, etc has led to the development of suitable methologies for isolation and manupilation of protoplasts from a wide variety of algae (Waaland et al., 1990; Reddy and Fujita, 1991; Chen and Chiang, 1994). Protoplasts technology to seaweeds depends large on the ability to produce viable cells capable of regenerating into whole plantlets (Wakabayashi et al., 1999). Though Capsosiphon fulvescens is one of the important economic seaweeds culturing in Korea, surprisingly protoplasts approach on this species has not been reported so far. Consequently we investigated the various aspects related to the protoplasts of Capsosiphon fulvescens in this study. (omitted)

  • PDF

Regeneration from Storage Root Disk Culture of Purple Sweet Potato

  • Park, Hyejeong;Park, Hyeonyong
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.363-369
    • /
    • 2015
  • Sweet potato has low regeneration capacity, which is a serious obstacle for the fruitful production of transgenic plants. Simple and rapid regeneration method from storage root explants of purple sweet potato (Ipomoea batatas L.) was investigated. The embryogenic callus was observed from 4 cultivars and its highest rate was induced at 1 μM 2,4-D after 5 weeks of culture. Result revealed that a low concentration of 2,4-D and low light intensity was important factors for embryogenic callus formation. After subculture on medium with 5 μM ABA for 4 days, subsequently, occurred the regeneration of shoots within 4 weeks when these embryogenic callus was transferred onto the MS hormone free medium. Regenerated shoots were developed into platelets, and grown normal plants in the greenhouse. We developed a simple and quickly protocol to regenerate plantlets in storage root explants of purple sweet potato. This regeneration system will facilitate tissue culture and gene transfer research of purple sweet potato.