• 제목/요약/키워드: plant-growth-promoting rhizobacteria

검색결과 172건 처리시간 0.021초

근권세균과 옥수수를 이용한 유류 및 중금속 복합 오염토양의 Rhizoremediation (Rhizoremediation of Petroleum and Heavy Metal-Contaminated Soil using Rhizobacteria and Zea mays)

  • 홍선화;구소연;김성현;류희욱;이인숙;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제38권3호
    • /
    • pp.329-334
    • /
    • 2010
  • 본 연구에서는 유류 분해능이 있고 식물 성장 촉진능력을 가진 Gordonia sp. S2RP-17, 중금속에 내성을 가지며 식물 성장촉진 능력이 있는 Serratia sp. SY5 및 옥수수를 이용하여 유류 및 중금속 오염 토양의 정화 특성을 조사하였다. 유류 및 중금속 오염 토양에서 51일간 재배한 옥수수의 평균 뿌리 건중량은 $1.9{\pm}0.2\;g$이었으나, 근권세균을 접종한 오염 토양에서 재배한 옥수수의 뿌리 건중량은 $5.6{\pm}0.7\;g$로, 근권세균 접종에 의해 옥수수의 뿌리의 중량이 유의적으로 증가함을 알 수 있었다(p<0.01). 초기에는 토양의 TPH 농도는 $21,576{\pm}3,426\;mg-TPH{\cdot}kg-dry\;soil^{-1}$이었는데, 51일 후 옥수수만을 식재한 토양의 잔류 TPH 농도는 $220{\pm}98\;mg-TPH{\cdot}kg-dry\;soil^{-1}$이었고, 옥수수와 함께 근권세균을 접종한 토양의 잔류 TPH 농도는 $20{\pm}41\;mg-TPH{\cdot}kg-dry\;soil^{-1}$이었다. 이러한 결과로부터 옥수수 식재에 의해 대부분의 TPH를 제거할 수 있으며, 옥수수와 함께 근권세균을 접종하면 TPH 효율이 조금 더 향상됨을 알 수 있었다. 그러나, 중금속 제거효율에 미치는 근권세균 접종 효과는 거의 없었다.

수박 만할병균에 길항하는 Bacillus sp. YJ-3에 의한 대목용 참박 생육촉진효과 (Plant Growth-Promoting Effects of Antagonistic Bacillus sp. YJ-3 against Fusarium Wilt of Watermelon-Rootstock Gourd)

  • 김진호;최용화;주길재
    • 한국환경농학회지
    • /
    • 제20권1호
    • /
    • pp.57-62
    • /
    • 2001
  • 여러 작물 재배지 토양에서 각종 근권미생물을 분리하여 이들 분리미생물 중 수박 만할병균인 Fusarium oxysporum f. sp. niveum(KCCM34741)에 길항하는 미생물인 YJ-19, YJ-45, YJ-3 등 12 균주를 분리하였다. 길항미생물들은 MS agar 배지 실험 및 미생물제제 첨가 상토 실험에서 모두 참박의 발아율을 향상시켰으며, 이들 중 분리주 YJ-3 균주는 참박의 발아율과 초기생육에 가장 큰 영향을 주는 미생물로 선별되었다. YJ-3 균주를 제제화하여 참박 재배 기간별로 식물체 생육실험을 행한 결과 대조구인 일반 상토 및 시판 미생물혼합 상토 보다 각각 46%와 13%정도 생육을 촉진하는 것으로 나타났다. 분리주 YJ-3 균주는 간균의 gram 양성균으로서 Bacillus sp.로 동정되었다. Bacillus sp. YJ-3은 수박 만할병균인 F. oxysporum f. sp. niveum에 대해 강한 억제효과를 나타내었고, 그외 수박 병원균인 Alternaria cucumerina, Botrytis cinerea, Colletotrichum orbiculare, Didymella bryoniae, Rhazoctonia solani 등에서도 우수한 길항력을 나타내어 본 Bacillus sp. YJ-3 균주는 수박 만할병균에 길항하는 동시에 참박의 생육을 촉진하는 미생물로 확인되었다.

  • PDF

중금속 내성 및 식물 생장 향상 근권세균 Methylobacterium sp. SY-NiR1의 분리 및 특성 (Characterization of a Heavy Metal-Resistant and Plant Growth-Promoting Rhizobacterium, Methylobacterium sp. SY-NiR1)

  • 구소연;조경숙
    • 한국미생물·생명공학회지
    • /
    • 제35권1호
    • /
    • pp.58-65
    • /
    • 2007
  • 중금속으로 오염된 토양을 정화하기 위한 rhizoremediation 기법에서 식물이 중금속을 흡수하고 이동시키는 효율을 증가시키기 위하여 토양 미생물 특히, 근권세균의 역할이 중요하다. 이를 위하여 본 연구에서는 정유공장 주변의 유류 및 중금속으로 장기간 오염된 토양에서 서식하는 4가지 식물의 근권토양으로부터 Methylobacterium sp. SY-NiR1 균주를 분리하였다. 분리한 Methylobacterium sp. SY-NiR1는 분홍색 콜로니 형성, 막대모양 및 $\alpha-proteobacteria$에 속하는 특성으로 보아 pink-pigmented facultative methylotroph인 것으로 사료된다. 이 균주는 식물성호르몬인 indole acetic acid(IAA) 생산능을 가지고 있으며, 카드뮴, 크롬, 구리, 납, 니켈 그리고 아연 등과 같은 다양한 중금속에 대하여 내성을 가지고 있었으며, $EC_{50}$을 기준으로 한 SY-NiR1의 중금속에 대한 내성은 Zn > Ni > Cu > Pb > Cd > Cr 순이다. 따라서 본 연구에서 분리한 Methylobacterium sp. SY-NiR1 균주는 중금속으로 오염된 토양에서 식물의 발아, 생장 및 발달을 도와 식물의 중금속 흡수를 증가시켜 rhizorememdiation 효율을 증가시킬 수 있을 것으로 기대된다.

Roads to Construct and Re-build Plant Microbiota Community

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제38권5호
    • /
    • pp.425-431
    • /
    • 2022
  • Plant microbiota has influenced plant growth and physiology significantly. Plant and plant-associated microbes have flexible interactions that respond to changes in environmental conditions. These interactions can be adjusted to suit the requirements of the microbial community or the host physiology. In addition, it can be modified to suit microbiota structure or fixed by the host condition. However, no technology is realized yet to control mechanically manipulated plant microbiota structure. Here, we review step-by-step plant-associated microbial partnership from plant growth-promoting rhizobacteria to the microbiota structural modulation. Glutamic acid enriched the population of Streptomyces, a specific taxon in anthosphere microbiota community. Additionally, the population density of the microbes in the rhizosphere was also a positive response to glutamic acid treatment. Although many types of research are conducted on the structural revealing of plant microbiota, these concepts need to be further understood as to how the plant microbiota clusters are controlled or modulated at the community level. This review suggests that the intrinsic level of glutamic acid in planta is associated with the microbiota composition that the external supply of the biostimulant can modulate.

Molecular Identification and Evaluation of Indigenous Bacterial Isolates for Their Plant Growth Promoting and Biological Control Activities against Fusarium Wilt Pathogen of Tomato

  • Islam, Amanul;Kabir, Md. Shahinur;Khair, Abul
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.137-148
    • /
    • 2019
  • In search of an effective biological control agent against the tomato pathogen Fusarium oxysporum f. sp. lycopersici, rhizospheric soil samples were collected from eight agro-ecological zones of Bangladesh. Among the bacteria isolated from soil, 24 isolates were randomly selected and evaluated for their antagonistic activity against F. oxysporum f. sp. lycopersici. The two promising antagonistic isolates were identified as Brevundimonas olei and Bacillus methylotrophicus based on morphological, biochemical and molecular characteristics. These two isolates were evaluated for their biocontrol activity and growth promotion of two tomato cultivars (cv. Pusa Rubi and Ratan) for two consecutive years. Treatment of Pusa Rubi and Ratan seeds with B. olei prior to inoculation of pathogen caused 44.99% and 41.91% disease inhibition respectively compared to the untreated but pathogen-inoculated control plants. However, treatment of Pusa Rubi and Ratan seeds with B. methylotrophicus caused 24.99% and 39.20% disease inhibition respectively. Furthermore, both the isolates enhanced the growth of tomato plants. The study revealed that these indigenous bacterial isolates can be used as an effective biocontrol agent against Fusarium wilt of tomato.

Complete Genome Sequence of Priestia megaterium Hyangyak-01 Isolated from Rhizosphere Soil of Centella asiatica

  • Kyeongmo Lim;HyungWoo Jo;Jerald Conrad Ibal;Min-Chul Kim;Hye-Been Kim;Dong-Geol Lee;Seunghyun Kang;Jae-Ho Shin
    • 한국미생물·생명공학회지
    • /
    • 제51권3호
    • /
    • pp.303-305
    • /
    • 2023
  • In this study, we report the complete genome sequence of Priestia megaterium strain HyangYak-01, which was isolated from the rhizosphere soil of Centella asiatica. The genome consists of 5,086,279 bp of sequences with 38.2 percent GC content and 5,111 coding genes. The genome contains several important genes related to plant growth-promoting activities, which were also confirmed with in vitro media assays.

인삼토양으로부터 옥신 생성 식물생장촉진세균의 분리 및 특성 (Isolation and Characterization of the Auxin producing Plant Growth Promoting Rhizobacterium from Soil in a Ginseng Field)

  • 박해성;정영필;윤민호
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.377-382
    • /
    • 2010
  • An auxin-producing bacterium (AMT-54) was isolated from ginseng cultivating soil of Geumsan area. The isolate AMT-54 was confirmed to produce indole-3-acetic acid (IAA) which is one of auxin hormone by TLC analysis. When the concentration of IAA was assessed by performing HPLC quantitative analysis, the maximal 457ppm of IAA was detected from the culture filtrate after culturing in R2A broth containing 0.1% tryptophan for 24h at $35^{\circ}C$. The molecular weight of the main peak obtained by LC-mass analysis was correspondent well to 175, that of IAA. The strain AMT-54 was identified as a novel species belongs to Klebsiella mobilis by a chemotaxanomic and phylogenetic analysis. To investigate the growth promoting effect of crop, when the culture broth of K. mobilis AMT-54 was infected onto seed pot of mung bean, the adventitious root induction and root growth of mung bean were 3.3times higher than control.

염 환경 하에서 Bacillus sp. SH1RP8와 Polyacrylate Polymers가 작물 생장에 미치는 영향에 관한 연구 (A Study on the Effect of the Rhizobacterium, Bacillus sp. SH1RP8 and Potassium Family Polymers on the Crop Growth under Saline)

  • 홍선화;김지슬;박장우;이은영
    • KSBB Journal
    • /
    • 제30권3호
    • /
    • pp.97-102
    • /
    • 2015
  • This study aimed to evaluate the potential plantgrowth promoting effects of potassium polyacrylate, a superabsorbent polymer, and Bacillus sp. SH1RP8, a family of plant-growth-promoting bacteria. Potassium polyacrylate was selected as the polymer for use due to its high molecular weight and its ability to retain and continuously supply moisture. Plant-growth-promoting rhizobacteria (PGPR) were isolated from the soil and applied to plants growing in dry environments, such as saline conditions. The moisture absorption and retention abilities of potassium polyacrylate were evaluated at a high temperature ($50^{\circ}C$) and in a dry condition, during which time the polymer showed a water retention potential of 19606.07% after 29 days. To overcome the reaming problem in the soil environment, natural polymers (such as cellulose) were mixed with the potassium acrylate. The shoot growths of Peucedanum japonicum Thunb and Arundo donax were significantly enhanced when treated with the mixture of the isolated rhizosphere bacterium SH1RP8 and potassium polyacrylate (63.5 and 124.3%, respectively).

Invisible Signals from the Underground: Bacterial Volatiles Elicit Plant Growth Promotion and Induce Systemic Resistance

  • Ryu, Choong-Min;Farag, Mohammed A.;Pare, Paul. W.;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • 제21권1호
    • /
    • pp.7-12
    • /
    • 2005
  • Plant growth-promoting rhizobacteria (PGPR) are a wide range of root-colonizing bacteria with the capacity to enhance plant growth and control plant pathogens. Here we review recent progress that indicate some PGPR strains release a blend of volatile organic compounds (VOCs) that promote growth in Arabidopsis seedlings and induce resistance against Erwinia carotovora subsp. carotovora. In particular, the volatile components 2,3-butanediol and acetoin released exclusively from the PGPR strains triggered the greatest level of growth promotion and induced systemic resistance. Pharmacological applications of 2,3-butanediol promoted the plant growth and induced resistance, while bacterial mutants blocked in 2,3-butanediol and acetoin synthesis was devoid of growth-promotion and induced resistance capacities. The results suggested that the bacterial VOCs play a critical role in the plant growth promotion and induced resistance by PGPR. Using transgenic and mutant lines of Arabidopsis, we provide evidences that the signal pathway activated by volatiles from one PGPR strain is dependent on cyto-kinin activation for growth promotion and dependent on an ethylene-signaling pathway for induced pathogen resistance. This discovery provides new insight into the role of bacterial VOCs as initiators of both plant growth promotion and defense responses in plants.

Activation of Pathogenesis-related Genes by the Rhizobacterium, Bacillus sp. JS, Which Induces Systemic Resistance in Tobacco Plants

  • Kim, Ji-Seong;Lee, Jeongeun;Lee, Chan-Hui;Woo, Su Young;Kang, Hoduck;Seo, Sang-Gyu;Kim, Sun-Hyung
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.195-201
    • /
    • 2015
  • Plant growth promoting rhizobacteria (PGPR) are known to confer disease resistance to plants. Bacillus sp. JS demonstrated antifungal activities against five fungal pathogens in in vitro assays. To verify whether the volatiles of Bacillus sp. JS confer disease resistance, tobacco leaves pre-treated with the volatiles were damaged by the fungal pathogen, Rhizoctonia solani and oomycete Phytophthora nicotianae. Pre-treated tobacco leaves had smaller lesion than the control plant leaves. In pathogenesis-related (PR) gene expression analysis, volatiles of Bacillus sp. JS caused the up-regulation of PR-2 encoding ${\beta}$-1,3-glucanase and acidic PR-3 encoding chitinase. Expression of acidic PR-4 encoding chitinase and acidic PR-9 encoding peroxidase increased gradually after exposure of the volatiles to Bacillus sp. JS. Basic PR-14 encoding lipid transfer protein was also increased. However, PR-1 genes, as markers of salicylic acid (SA) induced resistance, were not expressed. These results suggested that the volatiles of Bacillus sp. JS confer disease resistance against fungal and oomycete pathogens through PR genes expression.