Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.06.2018.0104

Molecular Identification and Evaluation of Indigenous Bacterial Isolates for Their Plant Growth Promoting and Biological Control Activities against Fusarium Wilt Pathogen of Tomato  

Islam, Amanul (Department of Botany, Jahangirnagar University)
Kabir, Md. Shahinur (Department of Botany, Jahangirnagar University)
Khair, Abul (Department of Botany, Jahangirnagar University)
Publication Information
The Plant Pathology Journal / v.35, no.2, 2019 , pp. 137-148 More about this Journal
Abstract
In search of an effective biological control agent against the tomato pathogen Fusarium oxysporum f. sp. lycopersici, rhizospheric soil samples were collected from eight agro-ecological zones of Bangladesh. Among the bacteria isolated from soil, 24 isolates were randomly selected and evaluated for their antagonistic activity against F. oxysporum f. sp. lycopersici. The two promising antagonistic isolates were identified as Brevundimonas olei and Bacillus methylotrophicus based on morphological, biochemical and molecular characteristics. These two isolates were evaluated for their biocontrol activity and growth promotion of two tomato cultivars (cv. Pusa Rubi and Ratan) for two consecutive years. Treatment of Pusa Rubi and Ratan seeds with B. olei prior to inoculation of pathogen caused 44.99% and 41.91% disease inhibition respectively compared to the untreated but pathogen-inoculated control plants. However, treatment of Pusa Rubi and Ratan seeds with B. methylotrophicus caused 24.99% and 39.20% disease inhibition respectively. Furthermore, both the isolates enhanced the growth of tomato plants. The study revealed that these indigenous bacterial isolates can be used as an effective biocontrol agent against Fusarium wilt of tomato.
Keywords
biological control; Fusarium oxysporum; fusarium wilt; plant growth promoting rhizobacteria; tomato;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Silva, H. S. A., Romeiro, R. S. and Mounteer, A. 2003. Development of a root colonization bioassay for rapid screening of rhizobacteria for potential biocontrol agents. J. Phytopathol. 151:42-46.   DOI
2 Singh, A. K. and Kamal, S. 2012. Chemical control of wilt in tomato (Lycopersicon esculentum L.). Int. J. Hortic. 2:5-6.
3 Sivamani, E. and Gnanamanickam, S. S. 1988. Biological counts of F. oxysporum f.sp. cubense in banana by inoculation with Pseudomonas fluorescens. Plant Soil 107:3-9.   DOI
4 Ambawade, M. S. and Pathade, G. R. 2015. Production of gibberellic acid by Bacillus siamensis BE 76 isolated from banana plant (Musa spp.). Int. J. Sci. Res. 4:394-398.
5 Belkar, Y. K. and Gade, R. M. 2012. Compatibility of fluorescent Pseudomonads with beneficial microorganisms. J. Plant Dis. Sci. 7:267-268.
6 Ayvaz, M., Koyuncu, M., Guven, A. and Fagerstedt, K. V. 2012. Does boron affect hormone levels of barley cultivars? Eurasia. J. Biosci. 6:113-120.
7 Bahig, A. E., Aly, E. A., Khaled, A. A. and Amel, K. A. 2008. Isolation, characterization and application of bacterial population from agricultural soil at Sohag Province, Egypt. Mal. J. Microbiol. 4:42-50.
8 Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol. Biochem. 19:451-457.   DOI
9 Beneduzi, A., Peres, D., Vargas, L. K., Bodanese-Zanettini, M. H. and Passaglia, L. M. P. 2008. Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing Bacilli isolated from rice fields in south Brazil. Appl. Soil Ecol. 39:311-320.   DOI
10 Bergey, D. H. and Holt, J. G. 2000. Bergey's manual of determinative bacteriology. 9th ed. Lippincott Williams & Wilkins, Philadelphia, USA. 787 pp.
11 Bhakthavatchalu, S., Shivakumar, S. and Sullia, S. B. 2013. Characterization of multiple plant growth promotion traits of Pseudomonas aeruginosa FP6, a potential stress tolerant biocontrol agent. Ann. Biol. Res. 4:214-223.
12 Bultreys, A. and Gheysen, I. 2000. Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Appl. Environ. Microbiol. 66:325-331.   DOI
13 Wei, Z., Huang, J., Yang, T., Jousset, A., Xu, Y., Shen, Q. and Friman, V. 2017. Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. J. Appl. Ecol. 54:1440-1448.   DOI
14 Sudini, H., Liles, M. R., Arias, C. R., Bowen, K. L. and Huettel, R. N. 2011. Exploring soil bacterial communities in different peanut-cropping sequences using multiple molecular approaches. Phytopathology 101:819-827.   DOI
15 Suryakala, D., Maheswaridevi, P. U. and Lakshmi, K. V. 2004. Chemical characterization and in vitro antibiosis of siderophores of rhizosphere fluorescent pseudomonads. Indian J. Microbiol. 44:105-108.
16 Tamura, K. and Nei, M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10:512-526.
17 Tans-Kersten, J., Huang, H. and Allen, C. 2001. Ralstonia solanacearum needs motility for invasive virulence on tomato. J. Bacteriol. 183:3597-3605.   DOI
18 Van Overbeek, L., Van Veen, J. A. and Van Elsas, J. D. 1997. Induced reporter gene activity, enhanced stress resistance, and competitive ability of a genetically modified Pseudomonas fluorescens strain released into a field plot planted with wheat. Appl. Environ. Microbiol. 63:1965-1973.   DOI
19 Weller, D. M. and Cook, R. J. 1983. Suppression of take-all of wheat by seed treatments with fluorescent Pseudomonads. Phytopathology 73:463-469.   DOI
20 Song, W., Zhou, L., Yang, C., Cao, X., Zhang, L. and Liu, X. 2004. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Prot. 23:120-123.
21 Ge, B., Liu, B., Nwet, T. T., Zhao, W., Shi, L. and Zhang, K. 2016. Bacillus methylotrophicus strain NKG-1, isolated from Changbai mountain, China, has potential applications as a biofertilizer or biocontrol agent. PLoS ONE 11:e0166079.   DOI
22 Akkopru, A. and Demir, S. 2005. Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f.sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 153:544-550.   DOI
23 Almoneafy, A., Xie, G. L., Tian, W. X., Xu, L. H., Zhang, G. Q. and Ibrahim, M. 2012. Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt. Afr. J. Biotechnol. 11:7193-7201.
24 Altschul, S. F., Gish W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
25 Carmassi, G., Incrocci, L., Incrocci, G. and Pardossi, A. 2007. Non-destructive estimation of leaf area in (Solanum lycopersicum L.) and gerbera (Gerbera jamesonii H. bolus). Agr. Med. 137:172-176.
26 Chookietwattana, K. and Maneewan, K. 2012. Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ. 31:30-36.
27 Fan, Z.-U., Miao, C.-P., Qiao, X.-G., Zheng, Y.-K., Chen, H.-H., Chen, Y.-W., Xu, L.-H., Zhao, L.-X. and Guan, H.-L. 2016. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng. J. Ginseng Res. 40:97-104.   DOI
28 Freeman, S., Zveibil, A., Vintal, H. and Maymon, M. 2002. Isolation of non-pathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilts in Cucurbits. Phytopathology 92:164-168.   DOI
29 Geetha, K., Chaitanya, K. and Bhadraiah, B. 2014. Isolation and characterization of PGPR isolates from rhizosphere soils of greengram in Warangal district of Telangana. Int. J. Pharm. Bio Sci. 5:153-163.
30 Gulati, A., Sood, S., Rahi, P., Thakur, R., Chauhan, S. and Chawla, I. 2011. Diversity analysis of diazotrophic bacteria associated with the roots of tea (Camellia sinensis (L.) O. Kuntze). J. Microbiol. Biotechnol. 21:545-555.   DOI
31 Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X. and Sun, P. H. 2004. Biocontrol of tomato wilt by growth promoting rhizobacteria. Biol. Control 29:66-72.   DOI
32 ISTA. 1976. International rules for seed testing. Seed Sci. Technol. 4:3-49.
33 Kumar, P., Dubey, R. C. and Maheshwari, D. K. 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167:493-499.   DOI
34 Whipps, J. M. 1997. Ecological considerations involved in commercial development of biological control agents for soilborne diseases. In: Modern soil microbiology, eds. by J. D. van Elsas, J. T. Trevors and E. M. H. Wellington, pp. 525-545. Elsevier, The Netherlands.
35 ISTA. 1996. International rules for seed testing. Seed Sci. Technol. 24:211-288.
36 ISTA. 1999. International rules for seed testing. Seed Sci. Technol. 27:27-31.
37 Khalequzzaman, K. M., Jinnah, M. A., Rashid, M. A. A. M., Chowdhury, M. N. A. and Alam, M. M. 2002. Effect of Pseudomonas fluorescens in controlling bacterial wilt of tomato. Pak. J. Plant Pathol. 1:71-73.   DOI
38 Khan, M. S. and Zaidi, A. 2002. Plant growth promoting rhizobacteria from rhizosphere of wheat and chickpea. Ann. Plant Prot. Sci. 10:265-271.
39 Kumar, S., Stecher, G. and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874.   DOI
40 Kumar, V. and Gera, R. 2014. Isolation of a multi-trait plant growth promoting Brevundimonas sp. and its effect on the growth of Bt-cotton. 3 Biotech. 4:97-101.   DOI
41 Lamsal, K., Kim, S. W., Kim, Y. S. and Lee, Y. S. 2013. Biocontrol of late blight and plant growth promotion in tomato using rhizobacterial isolates. J. Microbiol. Biotechnol. 23:897-904.   DOI
42 Lee, M., Srinivasan, S. and Kim, M. K. 2010. New taxa in Alphaproteobacteria: Brevundimonas olei sp. nov., an esteraseproducing bacterium. J. Microbiol. 48:616-622.   DOI
43 Murthy, K. N., Uzma, F., Chitrashree and Srinivas, C. 2014. Induction of systemic resistance in tomato against Ralstonia solanacearum by Pseudomonas fluorescens. Am. J. Plant Sci. 5:1799-1811.   DOI
44 Maclachlan, S. and Zalik, S. 1963. Plastid structure, chlorophyll concentration and free amino-acid composition of a chlorophyll mutant of barley. Can. J. Bot. 41:1053-1062.   DOI
45 Malleswari, D. and Bagyanarayana, G. 2013. In vitro screening of rhizobacteria isolated from the rhizosphere of medicinal and aromatic plants for multiple plant growth promoting activities. J. Microbiol. Biotechnol. Res. 3:84-91.
46 Mezeal, I. A. 2014. Study biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani and Fusarium oxysporum causing disease in tomato. Indian J. Fund. Appl. Life Sci. 4:175-183.
47 Mishra, D. S., Gupta, A. K., Prajapati, C. R. and Singh, U. S. 2011. Combination of fungal and bacterial antagonists for management of root and stem rot disease of soybean. Pak. J. Bot. 43:2569-2574.
48 Mistry, K. K., Chatterjee, D. D. and Khair, A. 2008. Effect of compost on diseases incidence in winter tomato (Lycopersicon esculentum Mill.) under open field conditions. B. Res. Pub. J. 1:312-318.
49 Naik, P. R., Raman, G., Narayanan, K. B. and Sakthivel, N. 2008. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol. 8:230.   DOI
50 Niranjan Raj, S., Deepak, S. A., Basavaraju, P., Shetty, H. S., Reddy, M. S. and Kloepper, J. W. 2003. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot. 22:579-588.   DOI
51 Shruti, K., Arun, K. and Yuvneet, R. 2013. Potential plant growthpromoting activity of rhizobacteria Pseudomonas sp in Oryza sativa. J. Nat. Prod. Plant Resour. 3:38-50.
52 Raihan, A., Khandaker, M., Ferdous, M., Rahman, M. A., Uddin, J. and Nahiyan, M. 2016. Trichoderma suppresses pathogenic Fusarium causing tomato wilt in Bangladesh. British Microbiol. Res. J. 14:1-9.
53 Raj, S. N., Deepak, S. A., Basavaraju, P., Shetty, H. S., Reddy, M. S. and Kloepper, J. W. 2003. Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot. 22:579-588.   DOI
54 Ramanathan, A., Shanmugam, V., Raguchander, T. and Samiyappan, R. 2002. Induction of systemic resistance in ragi against blast disease caused by Pseudomonas fluorescens. Ann. Plant Prot. Sci. 10:313-318.
55 Rana, A., Saharan, B., Joshi, M., Prasanna, R., Kumar, K. and Nain, L. 2011. Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann. Microbiol. 61:893-900.   DOI
56 Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for the identification of plant pathogenic bacteria. 3rd ed. APS Press, St. Paul, MN, USA. 373 pp.
57 Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H. and Khan, A. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J. Microbiol. Biotechnol. 22:641-650.   DOI