Browse > Article

Characterization of a Heavy Metal-Resistant and Plant Growth-Promoting Rhizobacterium, Methylobacterium sp. SY-NiR1  

Koo, So-Yeon (Department of Environmental Science and Engineering, Ewha Womans University)
Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.1, 2007 , pp. 58-65 More about this Journal
Abstract
The role of soil microorganisms, specifically rhizobacteria, in the development of rhizoremediation techniques is important to speed up the process and to increase the rate of mobilization or absorption of heavy metals to the plant. In this study, Methylobacterium sp. SY-NiR1 was isolated from the rhizosphere soils of plants in oil and heavy metal-contaminated soil. Based on its pink pigmented colony, rod-shape cells, and belonging in $\alpha-Proteobacteria$, Methylobacterium sp. SY-NiR1 is considered a pink-pigmented facultative methylotroph. SY-NiR1 had the ability to produce indole acetic acid which is one of phytohormones. This bacterium showed resistance against multiple heavy metals such as Cd, Cr, Cu, Pb, Ni, Zn, and the order of its resistance based on $EC_{50}$ was Zn > Ni > Cu > Pb > Cd > Cr. Therefore, Methylobacterium sp. SY-NiR1 can stimulate seed germination and plant growth in soil contaminated with heavy metals.
Keywords
Phytoremediation; heavy metal; Methylobacterium; plant growth-promoting rhizobacteria (PGPR);
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Araujo, W. L., J. Marcon, W. Jr. Maccheroni, J. D. van Elsas, J. W. L. van Vuurde, and J. L. Azevedo. 2002. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Appl. Environ. Microbiol. 68: 4906-4919   DOI
2 Hiraishi, A., K. Furuchi, A. Matsumoto, K. A. Koike, M. Fukuyama, and K. Tabuchi. 1995. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl. Environ. Microbiol. 61: 2099-2107   PUBMED
3 Idris, R., M. Kuffuer, L. Bodrossy, M. Puschenreiter, S. Monchy, W. W. Wenzel, and A. Sessitsch. 2006. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov., Syst. Appl. Microbiol. 29: 634-644   DOI   ScienceOn
4 Ivanova, E. G., N. V. Doronina, A. O. Shepeliakovskaia, A. G. Laman, F. A. Brovko, and Y. A. Trotsenko. 2000. Facultative and obligate aerobic methylobacteria synthesize cytokinins. Microbiology 67: 646-651
5 Krishnamurti, G S. R., G. Cieslinski, P. M. Huang, and K. C. J. Van Rees. 1997. Kinetics of cadmium release from soils as influenced by organic acids: Implication in cadmium availability. J. Environ. Qual. 26: 271-277   DOI   ScienceOn
6 Lidstrom, M. E. and L. Christoserdova. 2002. Plants in the pink: cytokinin production by Methylobacterium. J. Bacteriol. 184: 1818   DOI   ScienceOn
7 Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, and J. C. Yang. 2004. Growth promotion and inducution of systemic resistance in rice cultivar Co-47(Oryza sativa L.) by Methylobacterium spp. Botanical Bulletin of Academia Sinica 45: 315-324
8 Madhaiyan, M., S. Poonguzhali, J. Ryu, and T. Sa. 2006. Regulation of ethylene levels in canola(Barassica compestris) by 1-aminocyclopropane-1-carboxylate deainase-containing Methylobacterium fujisawaense. Planta 224: 268-278   DOI   ScienceOn
9 Mench, M. and E. Martin. 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea may. L., Nicotiana tabbacum L., and Nicotiana rustica L. Plant Soil 137: 187-196
10 Roane, T. M. 1999. Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microb. Ecol 37: 218-224   DOI
11 Robert, M. and J. Berthelin. 1994. Role of biological and biochemical factor in soil mineral weathering. In: P.M. Huang, M. Schnitzer(eds.), Interaction of soil minerals with natural organic and microbes. Soil Sci. Soc. Amer, Madison, WI
12 Kim, T. J., E. Y. Lee, Y. J. Kim, K. S. Cho, and H. W. Ryu. 2003. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J. Microbiol. Biotechnol. 19: 411-417   DOI   ScienceOn
13 Ryu, J., M. Madhaiyan, S. Poonguzhali, W. Yim, P. Indiragandhi, K. Kim, R. Anadham, J. Yun, and T. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato(Lycopersicon esculentum L.) and red pepper(Capsicum annum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628   과학기술학회마을
14 Sy, A., E. Giraud, P. Jourand, N. Garcia, A. Willems, P. de Lajudie, Y. Prin, M. Neyra, M. Gillis, C. Boivin-Masson, and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214-220   DOI   ScienceOn
15 Valls, M. and V. de Lorenzo. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol. Rev. 26: 327-338   DOI   PUBMED
16 Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganism which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603   PUBMED
17 Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacerial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microboil. 70: 2667-2677   DOI
18 Holland, M. A. and J. C. Polacco. 1994. PPFMs and other covert contaminants: is there more to plant physiology than just plant. Plant Physiol. 45: 197-209
19 Ivanova, E. G., N. V. Doronina, A. O. Shepeliakovskaia, A. G. Laman, F. A. Brovko, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. Microbiology 70: 392-397   DOI
20 Diaz-Ranina, M. and E. Baath. 1996. Development of metal tolerance in soil bacterial communities exposed to experimentally increased metal levels. Appl. Environ. Microbiol. 62: 2970-2977   PUBMED
21 Abdoulaye, S., A. C. J. Timmers, C. Knief, and J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71: 7245-7252   DOI   ScienceOn
22 Corpe, W. A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62: 243-250   DOI
23 Fett, W. F., S. F. Osman, and M. F. Duun. 1987. Auxin production by plant-pathogenic Pseudomonas and Xanthomonas. Appl. Environ. Microbiol. 53: 1839-1845   PUBMED
24 Gadd, G. M. 1992. Microbial control of pollution, pp. 59-88. Cambridge Press, Cambridge
25 Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43: 93-96   DOI   ScienceOn
26 Green, P. N. 1992. The genus Methylobacterium, pp. 2342-2349. In: A. Balows, H. G Truper, M. Dworkin, W. Harder, and K. H. Schleifer( eds), The prokaryotes, second ed, Springer, Berlin, Germany
27 Omer, Z. S., R. Tombolini, and B. Gerhardson. 2004. Plant colonization by pink-pigmented facultative methylotrophic bacteria(PPFMs). FEMS Microbiol. Ecol. 47: 319-326   DOI   ScienceOn
28 Roane, T. M. and S. T. Kellogg, 1996. Characterization of bacterial communities in metal-contaminated soils. Can. J. Microbiol. 42: 593-603   DOI   PUBMED   ScienceOn
29 Doronina, N. V., E. G. Ivanova, and Yu. A. Trotsenko. 2002. New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiology 71: 116-118   DOI
30 Langley, S. and T. J. Beveridge. 1999. Effect of O-side-chain-lipopolysaccharide chemistry on metal binding. Appl. Environ. Microbiol. 65: 489-498   PUBMED
31 Nemecek-Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108: 1359-1368   DOI   PUBMED
32 Kumino, T., K. Seaki, K. Nagaoka, H. Oyaizu, and S. Matsumoto. 2001. Characterization of copper-resistant bacterial community in rhizosphere of highly copper-contaminated soil. Eur. J. Soil Biol. 37: 95-102   DOI   ScienceOn
33 Bar-Ness, E., Y. Hadar, Y. Chen, A. Shanzer, and J. Libman. 1992. Iron uptake by plants from microbial siderophores. Plant Physiol. 99: 1329-1335   DOI   ScienceOn
34 Corpe, W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Ecol. 62: 243-250
35 Jaftha, J. B., B. W. Strijdom, and P. L. Steyn. 2002. Characterization of pigmented methylotrophic bacteria which nodulate Lotononis bainesii. Appl. Microbiol. 25: 440-449   DOI   ScienceOn
36 Basile, D. V., M. R. Basile, Q. -Y. Li, and W. A. Corpe. 1985. Vitamin $B_{12}$-stimulate growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum.(Hepaticae). Bryologist 88: 77-81   DOI   ScienceOn
37 Davies, P. J. 1995. The plant hormone concept: Concentration, sensitivity, and transport, pp. 13-18. In: P. J. Davies(ed.), Plant hormones: Physiology, biochemistry, and Molecular Biology. Kluwer Acedemic Publishers, Dordrecht, The Netherlands
38 Heggo, A. and J. S. Angel. 1990. Effects of vesiculararbuscular mycorrhizal fungi on heavy metal uptake by soybean. Soil Biol. Biochem. 22: 865-869   DOI   ScienceOn
39 Libbert, E., S. Wichner, U. Schiewer, H. Risch, and W. Kaiser. 1966. The influence of epiphytic bacteria on auxin metabolism. Planta 68: 327-334   DOI
40 Reber, H. H. 1992. Simultaneous estimates of the diversity and the degradative capability of heavy-metal-affected soil bacterial communities. Biol. Fertil. Soils 13: 181-186
41 Foster, T. J. 1983. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361-409   PUBMED
42 Ietswaart, J. H., W. A. J. Griffoen, and W. H. O. Ernst. 1992. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Envion. Microbiol. 33: 1225-1228
43 Lodewyckx, C., M. Mergeay, J. Vangronsfeld, H. Clijsters, and D. Van der Lelie. 2002. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. Calaminaria. Int. J. Phytoreme. 4: 101-105   DOI   ScienceOn
44 Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2005. Influence of plant growth promoting bacteria and $Cr^{6+}$ on the growth of Indian mustard. Chemosphere 62: 741-748   PUBMED