DOI QR코드

DOI QR Code

Roads to Construct and Re-build Plant Microbiota Community

  • Kim, Da-Ran (Research Institute of Life Sciences (RILS), Gyeongsang National University) ;
  • Kwak, Youn-Sig (Research Institute of Life Sciences (RILS), Gyeongsang National University)
  • Received : 2022.05.04
  • Accepted : 2022.07.19
  • Published : 2022.10.01

Abstract

Plant microbiota has influenced plant growth and physiology significantly. Plant and plant-associated microbes have flexible interactions that respond to changes in environmental conditions. These interactions can be adjusted to suit the requirements of the microbial community or the host physiology. In addition, it can be modified to suit microbiota structure or fixed by the host condition. However, no technology is realized yet to control mechanically manipulated plant microbiota structure. Here, we review step-by-step plant-associated microbial partnership from plant growth-promoting rhizobacteria to the microbiota structural modulation. Glutamic acid enriched the population of Streptomyces, a specific taxon in anthosphere microbiota community. Additionally, the population density of the microbes in the rhizosphere was also a positive response to glutamic acid treatment. Although many types of research are conducted on the structural revealing of plant microbiota, these concepts need to be further understood as to how the plant microbiota clusters are controlled or modulated at the community level. This review suggests that the intrinsic level of glutamic acid in planta is associated with the microbiota composition that the external supply of the biostimulant can modulate.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) [2020R1A2C2004177] and the Rural Development Administration (PJ015871).

References

  1. Adair, K. L. and Douglas, A. E. 2017. Making a microbiome: the many determinants of host-associated microbial community composition. Curr. Opin. Microbiol. 35:23-29. https://doi.org/10.1016/j.mib.2016.11.002
  2. Adejumo, T. O. and Orole, O. O. 2010. Effect of pH and moisture content on endophytic colonization of maize roots. Sci. Res. Essays 5:1655-1661.
  3. Araujo, R., Dunlap, C., Barnett, S. and Franco, C. M. M. 2019. Decoding wheat endosphere-rhizosphere microbiomes in Rhizoctonia solani-infested soils challenged by Streptomyces biocontrol agents. Front. Plant Sci. 10:1038.
  4. Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S. and Smith, D. L. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9:1473.
  5. Badri, D. V. and Vivanco, J. M. 2009. Regulation and function of root exudates. Plant Cell Environ. 32:666-681. https://doi.org/10.1111/j.1365-3040.2009.01926.x
  6. Badri, D. V., Weir, T. L., van der Lelie, D. and Vivanco, J. M. 2009. Rhizosphere chemical dialogues: plant-microbe interactions. Curr. Opin. Biotechnol. 20:642-650. https://doi.org/10.1016/j.copbio.2009.09.014
  7. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S. and Vivanco, J. M. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu. Rev. Plant Biol. 57:233-266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
  8. Bakker, M. G., Manter, D. K., Sheflin, A. M., Weir, T. L. and Vivanco, J. M. 2012. Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil. 360:1-13. https://doi.org/10.1007/s11104-012-1361-x
  9. Bakker, P., Pieterse, C., de Jonge, R. and Berendsen, R. L. 2018. The soil-borne legacy. Cell 172:1178-1180. https://doi.org/10.1016/j.cell.2018.02.024
  10. Beans, C. 2017. Core concept: probing the phytobiome to advance agriculture. Proc. Natl. Acad. Sci. U. S. A. 114:8900-8902. https://doi.org/10.1073/pnas.1710176114
  11. Behie, S. W., Bonet, B., Zacharia, V. M., McClung, D. J. and Traxler, M. F. 2017. Molecules to ecosystems: actinomycete natural products in situ. Front. Microbiol. 7:2149.
  12. Bene, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G.-I. and Williams, M. 2015. Feeding 9 billion by 2050 - putting fish back on the menu. Food Secur. 7:261-274. https://doi.org/10.1007/s12571-015-0427-z
  13. Berendsen, R. L., Vismans, G., Yu, K., Song, Y., de Jonge, R., Burgman, W. P., Burmolle, M., Herschend, J., Bakker, P. A. H. M. and Pieterse, C. M. J. 2018. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 12:1496-1507. https://doi.org/10.1038/s41396-018-0093-1
  14. Berg, G., Rybakova, D., Grube, M. and Koberl, M. 2016. The plant microbiome explored: implications for experimental botany. J. Exp. Bot. 67:995-1002. https://doi.org/10.1093/jxb/erv466
  15. Brilli, F., Loreto, F. and Baccelli, I. 2019. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Front. Plant Sci. 10:264.
  16. Calvo, P., Nelson, L. and Kloepper, J. 2014. Agricultural uses of plant biostimulants. Plant Soil 383:3-41. https://doi.org/10.1007/s11104-014-2131-8
  17. Cha, J.-Y., Han, S., Hong, H.-J., Cho, H., Kim, D., Kwon, Y., Kwon, S.-K., Crusemann, M., Lee, Y. B., Kim, J. F., Giaever, G., Nislow, C., Moore, B. S., Thomashow, L. S., Weller, D. M. and Kwak, Y.-S. 2016. Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J. 10:119-129. https://doi.org/10.1038/ismej.2015.95
  18. Chaparro, J. M., Sheflin, A. M., Manter, D. K. and Vivanco, J. M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils 48:489-499. https://doi.org/10.1007/s00374-012-0691-4
  19. Colombo, E. M., Kunova, A., Pizzatti, C., Saracchi, M., Cortesi, P. and Pasquali, M. 2019. Selection of an endophytic Streptomyces sp. strain DEF09 from wheat roots as a biocontrol agent against Fusarium graminearum. Front. Microbiol. 10:2356.
  20. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  21. del Carmen Orozco-Mosqueda, M., del Carmen Rocha-Granados, M., Glick, B. R. and Santoyo, G. 2018. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 208:25-31. https://doi.org/10.1016/j.micres.2018.01.005
  22. Du Jardin, P. 2015. Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021
  23. Dudareva, N., Klempien, A., Muhlemann, J. K. and Kaplan, I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 198:16-32. https://doi.org/10.1111/nph.12145
  24. Etesami, H. and Beattie, G. A. 2017. Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health, eds. by V. Kumar, M. Kumar, S. Sharma and R. Prasad, pp. 163-200. Springer, Singapore.
  25. Foley, J. A. 2011. Can we feed the world and sustain the planet? Sci. Am. 305:60-65. https://doi.org/10.1038/scientificamerican1111-60
  26. Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401.
  27. Hamonts, K., Trivedi, P., Garg, A., Janitz, C., Grinyer, J., Holford, P., Botha, F. C., Anderson, I. C. and Singh, B. K. 2018. Field study reveals core plant microbiota and relative importance of their drivers. Environ. Microbiol. 20:124-140. https://doi.org/10.1111/1462-2920.14031
  28. Haney, C. H., Samuel, B. S., Bush, J. and Ausubel, F. M. 2015. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 1: 15051.
  29. Harir, M., Bendif, H., Bellahcene, M., Fortas, Z. and Pogni, R. 2018. Streptomyces secondary metabolites. In: Basic biology and applications of Actinobacteria, ed. by S. Enany, pp. 99-122. IntechOpen, London, UK.
  30. Hassani, M. A., Duran, P. and Hacquard, S. 2018. Microbial interactions within the plant holobiont. Microbiome 6:158.
  31. Hernandez-Leon, R., Rojas-Solis, D., Contreras-Perez, M., del Carmen Orozco-Mosqueda, M., Macias-Rodriguez, L. I., Reyes-de la Cruz, H., Valencia-Cantero, E. and Santoyo, G. 2015. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol. Control 81:83-92. https://doi.org/10.1016/j.biocontrol.2014.11.011
  32. Huang, A. C., Jiang, T., Liu, Y.-X., Bai, Y.-C., Reed, J., Qu, B., Goossens, A., Nutzmann, H.-W., Bai, Y. and Osbourn, A. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364:eaau6389.
  33. Huang, X.-F., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, Q. and Vivanco, J. M. 2014. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92:267-275. https://doi.org/10.1139/cjb-2013-0225
  34. Jacoby, R. P. and Kopriva, S. 2019. Metabolic niches in the rhizosphere microbiome: new tools and approaches to analyse metabolic mechanisms of plant-microbe nutrient exchange. J. Exp. Bot. 70:1087-1094. https://doi.org/10.1093/jxb/ery438
  35. Kauffman, G. L., Kneivel, D. P. and Watschke, T. L. 2007. Effects of a biostimulant on the heat tolerance associated with photosynthetic capacity, membrane thermostability, and polyphenol production of perennial ryegrass. Crop Sci. 47:261-267. https://doi.org/10.2135/cropsci2006.03.0171
  36. Kim, D. R., Cho, G., Jeon, C. W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y. S. 2019a. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802.
  37. Kim, D.-R., Jeon, C.-W., Cho, G., Thomashow, L. S., Weller, D. M., Paik, M.-J., Lee, Y. B. and Kwak, Y.-S. 2021. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome 9:244.
  38. Kim, D.-R., Jeon, C.-W., Shin, J.-H., Weller, D. M., Thomashow, L. and Kwak, Y.-S. 2019b. Function and distribution of a lantipeptide in strawberry fusarium wilt disease-suppressive soils. Mol. Plant-Microbe Interact. 32:306-312. https://doi.org/10.1094/MPMI-05-18-0129-R
  39. Kloepper, J. W., Schroth, M. N. and Miller, T. D. 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078-1082. https://doi.org/10.1094/Phyto-70-1078
  40. Langridge, P. 2014. Reinventing the green revolution by harnessing crop mutant resources. Plant Physiol. 166:1682-1683. https://doi.org/10.1104/pp.114.252601
  41. Leclere, V., Bechet, M., Adam, A., Guez, J.-S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584. https://doi.org/10.1128/AEM.71.8.4577-4584.2005
  42. Liu, H. and Brettell, L. E. 2019. Plant defense by VOC-induced microbial priming. Trends Plant Sci. 24:187-189. https://doi.org/10.1016/j.tplants.2019.01.008
  43. Liu, H., Carvalhais, L. C., Crawford, M., Singh, E., Dennis, P. G., Pieterse, C. M. J. and Schenk, P. M. 2017. Inner plant values: diversity, colonization and benefits from endophytic bacteria. Front. Microbiol. 8:2552.
  44. Liu, H., Macdonald, C. A., Cook, J., Anderson, I. C. and Singh, B. K. 2019. An ecological loop: host microbiomes across multitrophic interactions. Trends Ecol. Evol. 34:1118-1130. https://doi.org/10.1016/j.tree.2019.07.011
  45. Martinez-Absalon, S., Rojas-Solis, D., Hernandez-Leon, R., Prieto-Barajas, C., del Carmen Orozco-Mosqueda, M., PenaCabriales, J. J., Sakuda, S., Valencia-Cantero, E. and Santoyo, G. 2014. Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Sci. Technol. 24:1349-1362. https://doi.org/10.1080/09583157.2014.940846
  46. O'Banion, B. S., O'Neal, L., Alexandre, G. and Lebeis, S. L. 2020. Bridging the gap between single-strain and community-level plant-microbe chemical interactions. Mol. Plant-Microbe Interact. 33:124-134. https://doi.org/10.1094/MPMI-04-19-0115-CR
  47. Parakhia, M. V. and Golakiya, B. A. 2018. Manipulation of phytobiome: a new concept to control the plant disease and improve the productivity. J. Bacteriol. Mycol. 6:322-324.
  48. Rodriguez, R. and Duran, P. 2020. Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects. Front. Bioeng. Biotechnol. 8:568.
  49. Rosenberg, E. and Zilber-Rosenberg, I. 2016. Microbes drive evolution of animals and plants: the hologenome concept. MBio 7:e01395.
  50. Ryan, R. P., Germaine, K., Franks, A., Ryan, D. J. and Dowling, D. N. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiol. Lett. 278:1-9. https://doi.org/10.1111/j.1574-6968.2007.00918.x
  51. Saleem, M., Arshad, M., Hussain, S. and Bhatti, A. S. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34:635-648. https://doi.org/10.1007/s10295-007-0240-6
  52. Santoyo, G., del Carmen Orozco-Mosqueda, M. and Govindappa, M. 2012. Mechanisms of biocontrol and plant growthpromoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci. Technol. 22:855-872. https://doi.org/10.1080/09583157.2012.694413
  53. Santoyo, G., Hernandez-Pacheco, C., Hernandez-Salmeron, J. and Hernandez-Leon, R. 2017. The role of abiotic factors modulating the plant-microbe-soil interactions toward sustainable agriculture. a review. Span. J. Agric. Res. 15:e03R01.
  54. Santoyo, G., Moreno-Hagelsieb, G., del Carmen OrozcoMosqueda, M. and Glick, B. R. 2016. Plant growth-promoting bacterial endophytes. Microbiol. Res. 183:92-99. https://doi.org/10.1016/j.micres.2015.11.008
  55. Schmalzer, S. 2016. Red revolution, green revolution: scientific farming in socialist China. The University of Chicago Press, Chicago, IL, USA. 320 pp.
  56. Singh, B. K., Liu, H. and Trivedi, P. 2020. Eco-holobiont: a new concept to identify drivers of host-associated microorganisms. Environ. Microbiol. 22:564-567. https://doi.org/10.1111/1462-2920.14900
  57. Singh, D. P., Gupta, V. K. and Prabha, R. 2019. Microbial interventions in agriculture and environment. Vol. 2. Rhizosphere, microbiome and agro-ecology. Springer, Singapore. 573 pp.
  58. Sparks, D. L. 2012. Advances in agronomy. Vol. 117. Academic Press, San Diego, CA, USA. 376 pp.
  59. Thomashow, L. S. and Weller, D. M. 1988. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J. Bacteriol. 170:3499-3508. https://doi.org/10.1128/jb.170.8.3499-3508.1988
  60. Turner, T. R., James, E. K. and Poole, P. S. 2013. The plant microbiome. Genome Biol. 14:209.
  61. van der Heijden, M. G. and Hartmann, M. 2016. Networking in the plant microbiome. PLoS Biol. 14:e1002378.
  62. Vannier, N., Agler, M. and Hacquard, S. 2019. Microbiota-mediated disease resistance in plants. PLoS Pathog. 15:e1007740.
  63. Vargas-Hernandez, M., Macias-Bobadilla, I., Guevara-Gonzalez, R. G., Romero-Gomez, S. J., Rico-Garcia, E., Ocampo-Velazquez, R. V., Alvarez-Arquieta, L. L. and Torres-Pacheco, I. 2017. Plant hormesis management with biostimulants of biotic origin in agriculture. Front. Plant Sci. 8:1762.
  64. Vurukonda, S. S. K. P., Giovanardi, D. and Stefani, E. 2018. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int. J. Mol. Sci. 19:952.
  65. Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M. J., van Loon, L. C. and Bakker, P. A. H. M. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403-412. https://doi.org/10.1094/PHYTO-08-11-0222
  66. Worsley, S. F., Newitt, J., Rassbach, J., Batey, S., Holmes, N. A., Murrell, J. C., Wilkinson, B. and Hutchings, M. I. 2020. Streptomyces endophytes promote host health and enhance growth across plant species. Appl. Environ. Microbiol. 86:e01053-e01020.
  67. Yang, C.-Y., Ho, Y.-C., Pang, J.-C., Huang, S.-S. and Tschen, J. S.-M. 2009. Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour. Technol. 100:1454-1458. https://doi.org/10.1016/j.biortech.2008.07.039
  68. Zilber-Rosenberg, I. and Rosenberg, E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32:723-735. https://doi.org/10.1111/j.1574-6976.2008.00123.x