• 제목/요약/키워드: plant volatile chemicals

검색결과 20건 처리시간 0.018초

식물 휘발성 물질에 대한 벼멸구 촉각의 전기생리학적 반응 (AC Recordings of Antennal Responses in The Rice Brown Planthopper to Common Plant Volatile Chemicals)

  • 윤영남;장영덕
    • 한국응용곤충학회지
    • /
    • 제33권1호
    • /
    • pp.19-25
    • /
    • 1994
  • 식물휘발성 물질에 대한 벼멸구 촉각의 반응을 전기 생리학적인 반응을 관찰하였다. 식물휘발성 물질은 일반적으로 곤충이 그들의 먹이나 산란 장소를 찾는데 아주 중요한 요소로 작용하고 있다. 이러한 기주 특이적인 성질을 파악하기 위하여 벼멸구 촉각에 분포하고 있는 화학감각기의 반응을 AC반응을 통하여 기록하였다. 벼멸구의 plaque organ에서 기된 spike 의 모양은 positive-going biphasic형으로 background spike는 초당 1~22개로 다양하였다. 벼멸구 촉각은 실험한 화학물질들에 광범위하게 반응하고 있는 것을 보여주었으며 농도가 높아짐에 따라 더욱 흥분되지만 일정 수준이상의 농도에서는 더 이상 흥분되지 않거나 억제되는 것을 보여주었다. 본 실험에서는 검정된 대부분의 식물 휘발성물질에서 가장 큰 반응을 보인 농도는 단위 용기 안에 100$\mug$의 물질이 있을 때였고, 가장 큰 반응을 보인 화합물은 hexanal 과 acetophenone이었다.

  • PDF

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • 제34권6호
    • /
    • pp.459-469
    • /
    • 2018
  • Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

서양등골나물 휘발성 추출물의 알레로파시 효과 (Allelopathic Effect of Volatile Extracts from Eupatorium rugosum)

  • 길지현;심규철;이호준
    • The Korean Journal of Ecology
    • /
    • 제28권3호
    • /
    • pp.135-139
    • /
    • 2005
  • 서양등골나물의 휘발성 추출물에 포함된 terpenoid 화합물을 분리, 동정하였고, 주요 물질 4종에 대한 종자발아와 유식물 생장을 조사하였다. 서양등골나물 정유에 포함된 화합물의 수는 $\beta$-caryophyllene, $\alpha$-terpinenol, chamazulene, bornyl acetate, $\alpha$-pinene등 총 49종이었으며, 그 중 3종은 미확인되었다. 서양등골나물의 정유로부터 분리 확인한 휘발성 화학물질 중 다량 함유되어 있거나 중요한 성분으로 판명된 $\alpha$-pinene, bornyl acetate, linalool 및 terpinen-4-ol 등 4종의 물질에 대한 녹두의 발아 억제 효과를 조사하였다. linalool과 terpinen-4-ol에 의해서는 녹두의 종자가 전혀 발아하지 못하여 발아 억제효과가 매우 큰 것으로 보인다. 정유 내 화합물에 의한 녹두 유식물의 초기 생장 결과, $\alpha$-pinene과 bornyl acetate에 대한 묘조와 유근의 생장은 농도에 따라 점점 억제되었고, linalool과 terpinen-4-ol에 대해서는 실험구에서 생장 반응이 나타나지 않을 만큼 강하게 억제반응이 나타났다. 생체량에 있어서 $\alpha$-pinene의 경우 58 ${\mu}l$ 이상에서 유의한 영향을 미치고 있었으며, bornyl acetate의 경우에는 19 ${\mu}l$ 이상에서 감소하는 것으로 나타났으나 그 이후에는 통계적으로 유의한 차이를 나타내지는 않았다. 위의 결과를 종합해 볼 때, 정유 내에 포함된 서양등골나물의 알레로 화합물 중 생물검정에 사용된 $\alpha$-pinene, bornyl acetate, linalool과 terpinen-4-ol은 식물의 발아 억제 효과를 나타내는 주요한 물질 중 하나로 생각되며, 특히 linalool과 terpinen-4-ol은 다른 식물의 생장을 감소시키는 데 탁월한 효과가 있음을 알 수 있었다.

Comparative analysis of volatile organic compounds from flowers attractive to honey bees and bumblebees

  • Dekebo, Aman;Kim, Min-Jung;Son, Minwoong;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • 제46권1호
    • /
    • pp.62-75
    • /
    • 2022
  • Background: Pollinators help plants to reproduce and support economically valuable food for humans and entire ecosystems. However, declines of pollinators along with population growth and increasing agricultural activities hamper this mutual interaction. Nectar and pollen are the major reward for pollinators and flower morphology and volatiles mediate the specialized plant-pollinator interactions. Limited information is available on the volatile profiles attractive to honey bees and bumblebees. In this study we analyzed the volatile organic compounds of the flowers of 9 different plant species that are predominantly visited by honey bees and bumblebees. The chemical compositions of the volatiles were determined using a head space gas chromatography-mass spectrometry (GC-MS) method, designed to understand the plant-pollinator chemical interaction. Results: Results showed the monoterpene 1,3,6-octatriene, 3,7-dimethyl-, (E) (E-𝞫-ocimene) was the dominating compound in most flowers analyzed, e.g., in proportion of 60.3% in Lonicera japonica, 48.8% in Diospyros lotus, 38.4% Amorpha fruticosa and 23.7% in Robinia pseudoacacia. Ailanthus altissima exhibited other monoterpenes such as 3,7-dimethyl-1,6-octadien-3-ol (𝞫-linalool) (39.1%) and (5E)-3,5-dimethylocta-1,5,7-trien-3-ol (hotrienol) (32.1%) as predominant compounds. Nitrogen containing volatile organic compounds (VOCs) were occurring principally in Corydalis speciosa; 1H-pyrrole, 2,3-dimethyl- (50.0%) and pyrimidine, 2-methyl- (40.2%), and in Diospyros kaki; 1-triazene, 3,3-dimethyl-1-phenyl (40.5%). Ligustrum obtusifolium flower scent contains isopropoxycarbamic acid, ethyl ester (21.1%) and n-octane (13.4%) as major compounds. In Castanea crenata the preeminent compound is 1-phenylethanone (acetophenone) (46.7%). Conclusions: Olfactory cues are important for pollinators to locate their floral resources. Based on our results we conclude monoterpenes might be used as major chemical mediators attractive to both honey bees and bumblebees to their host flowers. However, the mode of action of these chemicals and possible synergistic effects for olfaction need further investigation.

자원식물의 기능성 정유성분 이용 고찰 (Review of Functional Volatile Component in Essential Oil of Medicinal and Aromatic Plants)

  • 정해곤;방진기;성낙술;김성민
    • 한국작물학회지
    • /
    • 제48권
    • /
    • pp.41-48
    • /
    • 2003
  • The number of natural products obtained from plants has now reached over 100,000 and new chemical compounds are being discovered ever year. Medicinal and Aromatic plants and their extracts have been used for centuries to relieve pain, aid healing, kill bacteria and insects are important as the antifungal and anti-herbivore agents with further compounds being involved in the symbiotic associations. Although their functions in plants have not been fully established, it is Known that some substances have growth regulatory properties while others are involved in pollination and seed dispersal. The complex nature of these chemicals are usually produced in various types of secretory structures which is an important character of a plant family and also influenced and controlled by genetic and ecological factors. Detailed anatomical description of these structures ave relevant to the market value of the plants, the verification of authenticity of a given species and for the detection of substitution or adulteration. Volatile oils are used for their therapeutic action for flavoring of lemon, in perfumery of rose or as starting materials for the synthesis of other compounds of turpentine. For therapeutic purposes they are administered as inhalations of eucalyptus oil, peppermint oil, as gargles and mouthwashes of thymol and transdermally many essential oils including those of lavender, etc. With these current trend for using volatile components in essential oil will be increasing in the future in Korea and in the world as well.

In vitro Biofumigation of Brassica Tissues Against Potato Stem Rot Caused by Sclerotinia sclerotiorum

  • Ojaghian, Mohammad Reza;Jiang, Heng;Xie, Guan-Lin;Cui, Zhou-Qi;Zhang, Jingze;Li, Bin
    • The Plant Pathology Journal
    • /
    • 제28권2호
    • /
    • pp.185-190
    • /
    • 2012
  • Sclerotinia sclerotiorum is a serious pathogen which causes yield loss in many dicotyledonous crops including potato. The objective of this study was to assess the potential of biofumigation using three Brassica crops including Brassica napus, B. juncea and B. campestris against potato stem rot caused by S. sclerotiorum by in vitro tests. Both macerated and irradiated dried tissues were able to reduce radial growth and sclerotia formation of five pathogen isolates on PDA, but macerated live tissues were more effective. Compared with other tested crops, B. juncea showed more inhibitory effect against the pathogen. The volatile compounds produced from macerated tissues were identified using a gas chromatograph-mass spectrometer. The main identified compounds were methyl, allyl and butyl isothiocyanates. Different concentrations of these compounds inhibited mycelial growth of the pathogen in vitro when applied as the vapor of pure chemicals. A negative relationship was observed between chemicals concentrations and growth inhibition percentage. In this study, it became clear that the tissues of local Brassica crops release glucosinolates and have a good potential to be used against the pathogen in field examinations.

Evaluation of Streptomyces saraciticas as Soil Amendments for Controlling Soil-Borne Plant Pathogens

  • Wu, Pei-Hsuan;Tsay, Tung-Tsuan;Chen, Peichen
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.596-606
    • /
    • 2021
  • Soil-borne diseases are the major problems in mono cropping. A mixture (designated LTM-m) composed of agricultural wastes and a beneficial microorganism Streptomyces saraceticus SS31 was used as soil amendments to evaluate its efficacy for managing Rhizoctonia solani and root knot nematode (Meloidogyne incognita). In vitro antagonistic assays revealed that SS31 spore suspensions and culture broths effectively suppressed the growth of R. solani, reduced nematode egg hatching, and increased juvenile mortality. Assays using two Petri dishes revealed that LTM-m produced volatile compounds to inhibit the growth of R. solani and cause mortality to the root knot nematode eggs and juveniles. Pot and greenhouse tests showed that application of 0.08% LTM-m could achieve a great reduction of both diseases and significantly increase plant fresh weight. Greenhouse trials revealed that application of LTM-m could change soil properties, including soil pH value, electric conductivity, and soil organic matter. Our results indicate that application of LTM-m bio-organic amendments could effectively manage soil-borne pathogens.

Induced monoterpene and lignin production in mechanically stressed and fungal elicited cultured Cupressus lusitanica cells

  • De Alwis, Ransika;Fujita, Koki;Ashitani, Tatsuya;Kuroda, Ken'ichi
    • Plant Biotechnology Reports
    • /
    • 제3권1호
    • /
    • pp.57-65
    • /
    • 2009
  • Cultured Cupressus lusitanica cells induced by various stresses are thought to produce different complexes of defense chemicals to optimize defense. To compare the induced products of two stimulations, we investigated the emission of monoterpenes, biosynthesis of ${\beta}-thujaplicin$, and accumulation of lignin in mechanically stressed and fungal elicited cultured C. lusitanica cells. Both mechanical stress and fungal elicitor caused emission of qualitatively similar monoterpene blends indicating de novo biosynthesis of these compounds after stimulation, while mechanical stress alone is sufficient to induce fungal elicitor-related monoterpene emission. Sabinene and limonene were the dominant compounds over the time course in both volatile blends. Although the emitted volatile blends were qualitatively similar, the time course and the relative ratios of the constituents of the volatile blends differed with the type of stimulation. While fungal elicited cells produced significant amounts of ${\beta}-thujaplicin$ over the 5-day time course, no ${\beta}-thujaplicin$ was observed in the mechanically stressed cells. The production of ${\beta}-thujaplicin$ was the main dissimilarity of the induced products of these two treatments, suggesting that synthesis of ${\beta}-thujaplicin$ is not a general response to all types of stresses, but is a specific response and serves as a strong toxic compound against already invaded fungus. Significantly higher amounts of lignin accumulations were observed in the fungal elicited and mechanically stressed cells on the 5th day after induction. Based on these results, we suggest the composition of induced products was dependent on the method of stimulation.

환경 중 유전독성물질 검색을 위한 자주달개비 생물검정 기법의 적용연구 (Biomonitoring the Genotoxicity of Environmental Pollutants Using the Tradescantia Bioassay)

  • 신해식
    • 한국환경독성학회:학술대회논문집
    • /
    • 한국환경독성학회 2004년도 춘계학술대회
    • /
    • pp.47-60
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public from agents that can cause mutation and/or cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF

자주달개비 생물검정 기법을 이용한 환경오염 평가 (Assessment of Environmental Pollution with Tradescantia Bioassays)

  • 김진규;신해식
    • 한국환경생물학회:학술대회논문집
    • /
    • 한국환경생물학회 2004년도 학술대회
    • /
    • pp.1-15
    • /
    • 2004
  • Higher plants can be valuable genetic assay systems for monitoring environmental pollutants and evaluating their biological toxicity. Two assays are considered ideal for in situ monitoring and testing of soil, airborne and aqueous mutagenic agents; the Tradescantia stamen hair assay for somatic cell mutations and the Tradescantia micronucleus assay for chromosome aberrations. Both assays can be used for in vivo and in vitro testing of mutagens. Since higher plant systems are now recognized as excellent indicators and have unique advantages over in situ monitoring and screening, higher plant systems could be accepted by regulatory authorities as an alternative first-tier assay system for the detection of possible genetic damages resulting from the pollutants or chemicals used and produced by industrial sectors. It has been concluded that potential mutagen and carcinogen such as the heavy metals among indoor air particulates, volatile compounds in the working places, soil, and water pollutants contribute to the overall health risk. This contribution can be considerable under certain circumstances. It is therefore important to identify the level of genotoxic activity in the environment and to relate it to the biomarkers of a health risk in humans. The results from the higher plant bioassays could make a significant contribution to assessing the risks of pollutants and protecting the public firom agents that can cause mutation anuor cancer. The plant bioassays, which are relatively inexpensive and easy to handle, are recommended for the scientists who are interested in monitoring pollutants and evaluating their environmental toxicity to living organisms.

  • PDF