Browse > Article
http://dx.doi.org/10.5141/jee.21.001

Comparative analysis of volatile organic compounds from flowers attractive to honey bees and bumblebees  

Dekebo, Aman (Agricultural Science and Technology Institute, Andong National University)
Kim, Min-Jung (Agricultural Science and Technology Institute, Andong National University)
Son, Minwoong (Department of Plant Medicals, Andong National University)
Jung, Chuleui (Agricultural Science and Technology Institute, Andong National University)
Publication Information
Journal of Ecology and Environment / v.46, no.1, 2022 , pp. 62-75 More about this Journal
Abstract
Background: Pollinators help plants to reproduce and support economically valuable food for humans and entire ecosystems. However, declines of pollinators along with population growth and increasing agricultural activities hamper this mutual interaction. Nectar and pollen are the major reward for pollinators and flower morphology and volatiles mediate the specialized plant-pollinator interactions. Limited information is available on the volatile profiles attractive to honey bees and bumblebees. In this study we analyzed the volatile organic compounds of the flowers of 9 different plant species that are predominantly visited by honey bees and bumblebees. The chemical compositions of the volatiles were determined using a head space gas chromatography-mass spectrometry (GC-MS) method, designed to understand the plant-pollinator chemical interaction. Results: Results showed the monoterpene 1,3,6-octatriene, 3,7-dimethyl-, (E) (E-𝞫-ocimene) was the dominating compound in most flowers analyzed, e.g., in proportion of 60.3% in Lonicera japonica, 48.8% in Diospyros lotus, 38.4% Amorpha fruticosa and 23.7% in Robinia pseudoacacia. Ailanthus altissima exhibited other monoterpenes such as 3,7-dimethyl-1,6-octadien-3-ol (𝞫-linalool) (39.1%) and (5E)-3,5-dimethylocta-1,5,7-trien-3-ol (hotrienol) (32.1%) as predominant compounds. Nitrogen containing volatile organic compounds (VOCs) were occurring principally in Corydalis speciosa; 1H-pyrrole, 2,3-dimethyl- (50.0%) and pyrimidine, 2-methyl- (40.2%), and in Diospyros kaki; 1-triazene, 3,3-dimethyl-1-phenyl (40.5%). Ligustrum obtusifolium flower scent contains isopropoxycarbamic acid, ethyl ester (21.1%) and n-octane (13.4%) as major compounds. In Castanea crenata the preeminent compound is 1-phenylethanone (acetophenone) (46.7%). Conclusions: Olfactory cues are important for pollinators to locate their floral resources. Based on our results we conclude monoterpenes might be used as major chemical mediators attractive to both honey bees and bumblebees to their host flowers. However, the mode of action of these chemicals and possible synergistic effects for olfaction need further investigation.
Keywords
pollinators; honey bees; bumblebees; flowers; monoterpenes; ${\beta}$-ocimene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Faldt J, et al. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell. 2003;15(5):1227-41. https://doi.org/10.1105/tpc.011015.   DOI
2 Giurfa M, Vorobyev M, Kevan P, Menzel R. Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A. 1996;178(5):699-709. https://doi.org/10.1007/BF00227381.   DOI
3 Fernandes N, Silva FAN, de Aragao F, Zocolo GJ, Freitas BM. Volatile organic compounds role in selective pollinator visits to commercial melon types. J Agric Sci. 2019;11(3):93-108. https://doi.org/10.5539/jas.v11n3p93.   DOI
4 Kevan PG, Lane MA. Flower petal microtexture is a tactile cue for bees. Proc Natl Acad Sci U S A. 1985;82(14):4750-2. https://doi.org/10.1073/pnas.82.14.4750.   DOI
5 Roy BA, Raguso RA. Olfactory versus visual cues in a floral mimicry system. Oecologia. 1997;109(3):414-26. https://doi.org/10.1007/s004420050101.   DOI
6 Shimada T, Endo T, Fujii H, Hara M, Omura M. Isolation and characterization of (E)-beta-ocimene and 1,8 cineole synthases in Citrus unshiu Marc. Plant Sci. 2005;168(4):987-95. https://doi.org/10.1016/j.plantsci.2004.11.012.   DOI
7 Smith BH, Breed MD. The chemical basis for nestmate recognition and mate discrimination in social insects. In: Carde RT, Bell WJ, editors. Chemical ecology of insects 2. New York: Chapman & Hall; 1995. p. 287-317.
8 Smith BH. The olfactory memory of the honeybee Apis Mellifera: I. Odorant modulation of short- and intermediate-term memory after single-trial conditioning. J Exp Biol. 1991;161(1):367-82. https://doi.org/10.1242/jeb.161.1.367.   DOI
9 Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58(301):236-44.   DOI
10 Wenner AM, Wells PH, Johnson DL. Honey bee recruitment to food sources: olfaction or language? Science. 1969;164(3875):84-6. https://doi.org/10.1126/science.164.3875.84.   DOI
11 Kaiser L, De Jong R. Multi-odour memory influenced by learning order. Behav Processes. 1993;30(2):175-83. https://doi.org/10.1016/0376-6357(93)90007-E.   DOI
12 Ollerton J. Biogeography: are tropical species less specialised? Curr Biol. 2012;22(21):R914-5. https://doi.org/10.1016/j.cub.2012.09.023.   DOI
13 Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science. 2009;323(5910):130-3. https://doi.org/10.1126/science.1166256.   DOI
14 Farre-Armengol G, Fernandez-Martinez M, Filella I, Junker RR, Penuelas J. Deciphering the biotic and climatic factors that influence floral scents: a systematic review of floral volatile emissions. Front Plant Sci. 2020;11:1154. https://doi.org/10.3389/fpls.2020.01154.   DOI
15 Getz WM, Smith KB. Olfactory sensitivity and discrimination of mixtures in the honeybeeApis mellifera. J Comp Physiol. 1987;160(2):239-45. https://doi.org/10.1007/BF00609729.   DOI
16 Granero AM, Sanz JM, Gonzalez FJ, Vidal JL, Dornhaus A, Ghani J, et al. Chemical compounds of the foraging recruitment pheromone in bumblebees. Naturwissenschaften. 2005;92(8):371-4. https://doi.org/10.1007/s00114-005-0002-0.   DOI
17 Pecetti L, Tava A, Felicioli A, Pinzauti M, Piano E. Effect of three volatile compounds from lucerne flowers on their attractiveness towards pollinators. Bull Insectol. 2002;55(1-2):21-7.
18 Raguso RA, Willis MA. Synergy between visual and olfactory cues in nectar feeding by naive hawkmoths, Manduca sexta. Anim Behav. 2002;64(5):685-95.   DOI
19 Ribbands CR. Communication between honeybees. I: The response of crop-attached bees to the scent of their crop. Proc R Entomol Soc Lond Ser A Gen Entomol. 1954;29(10-12):141-4. https://doi.org/10.1111/j.1365-3032.1954.tb01187.x.   DOI
20 Menzel R, Erber J, Masuhr T. Learning and memory in the honeybee. In: Barton Browne L, editor. Experimental analysis of insect behaviour. Berlin: Springer; 1974. p. 195-217.
21 Williams NH, Whitten WM. Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol Bull. 1983;164(3):355-95. https://doi.org/10.2307/1541248.   DOI
22 Vareschi E. [Odor discrimination in the honey bee-single cell recordings and behavioral responses]. Z Vgl Physiol. 1971;75(2):143-73. German. https://doi.org/10.1007/BF00335260.   DOI
23 Jakobsen H, Kristjansson K, Rohde B, Terkildsen M, Olsen CE. Can social bees be influenced to choose a specific feeding station by adding the scent of the station to the hive air? J Chem Ecol. 1995;21(11):1635-48. https://doi.org/10.1007/BF02033666.   DOI
24 Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc Biol Sci. 2007;274(1608):303-13. https://doi.org/10.1098/rspb.2006.3721.   DOI
25 Lindauer M, Kerr WE. Communication between the workers of stingless bees. Bee World. 1960;41(2):29-41. https://doi.org/10.1080/0005772X.1960.11095309.   DOI
26 Khalifa SA, Elshafiey EH, Shetaia AA, El-Wahed AAA, Algethami AF, Musharraf SG, et al. Overview of bee pollination and its economic value for crop production. Insects. 2021;12(8):688. https://doi.org/10.3390/insects12080688.   DOI
27 Koltermann R. [Learning and forgetting processes in the honey bee-demonstrated using scent exercises]. Z Vgl Physiol. 1969;63(3):310-34. German. https://doi.org/10.1007/BF00298165.   DOI
28 Lacher V. [Electrophysiological studies on individual receptors for smell, carbon dioxide, air humidity and temperature on the antennae of worker bees and drones (Apis mellifica L.)]. Z Vgl Physiol. 1964;48:587-623. German. https://doi.org/10.1007/BF00333743.   DOI
29 Effmert U, Grosse J, Rose US, Ehrig F, Kagi R, Piechulla B. Volatile composition, emission pattern, and localization of floral scent emission in Mirabilis jalapa (Nyctaginaceae). Am J Bot. 2005;92(1):2-12. https://doi.org/10.3732/ajb.92.1.2.   DOI
30 Farre-Armengol G, Filella I, Llusia J, Penuelas J. Floral volatile organic compounds: between attraction and deterrence of visitors under global change. Perspect Plant Ecol Evol Syst. 2013;15(1):56-67. https://doi.org/10.1016/j.ppees.2012.12.002.   DOI
31 Zanata TB, Dalsgaard B, Passos FC, Cotton PA, Roper JJ, Maruyama PK, et al. Global patterns of interaction specialization in bird-flower networks. J Biogeogr. 2017;44(8):1891-910. https://doi.org/10.1111/jbi.13045.   DOI
32 Zhang S, Schwarz S, Pahl M, Zhu H, Tautz J. Honeybee memory: a honeybee knows what to do and when. J Exp Biol. 2006;209(Pt 22):4420-8. https://doi.org/10.1242/jeb.02522.   DOI
33 Dotterl S, Vereecken N. The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool. 2010;88(7):668-97. https://doi.org/10.1139/Z10-031.   DOI
34 Beekman M. How long will honey bees (Apis mellifera L.) be stimulated by scent to revisit past-profitable forage sites? J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005;191(12):1115-20. https://doi.org/10.1007/s00359-005-0033-1.   DOI
35 Diaz PC, Gruter C, Farina WM. Floral scents affect the distribution of hive bees around dancers. Behav Ecol Sociobiol. 2007;61(10):1589-97.   DOI
36 Dornhaus A, Chittka L. Evolutionary origins of bee dances. Nature. 1999;401(6748):38. https://doi.org/10.1038/43372.   DOI
37 Ollerton J. Pollinator diversity: distribution, ecological function, and conservation. Annu Rev Ecol Evol Syst. 2017;48:353-76. https://doi.org/10.1146/annurev-ecolsys-110316-022919.   DOI
38 Maisonnasse A, Lenoir JC, Costagliola G, Beslay D, Crauser D, Plettner E, et al. E-β-ocimene a new volatile primer pheromone that inhibits worker ovary development in honey bees. Paper presented at: International Union for the Study of Social Insects - French Section; 2009 Sep 2-4; Bondy, France. Tours: UIEIS, 2009. hal-02755737.
39 Menzel R. Learning in honey bees in an ecological and behavioral context. Fortschr Zool. 1985;31:55-74.
40 Molet M, Chittka L, Raine NE. How floral odours are learned inside the bumblebee (Bombus terrestris) nest. Naturwissenschaften. 2009;96(2):213-9. https://doi.org/10.1007/s00114-008-0465-x.   DOI
41 Gong WC, Chen G, Vereecken NJ, Dunn BL, Ma YP, Sun WB. Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species. Plant Biol (Stuttg). 2015;17(1):245-55. https://doi.org/10.1111/plb.12176.   DOI
42 Filella I, Primante C, Llusia J, Martin Gonzalez AM, Seco R, Farre-Armengol G, et al. Floral advertisement scent in a changing plant-pollinators market. Sci Rep. 2013;3(1):3434. https://doi.org/10.1038/srep03434.   DOI
43 Free J. Influence of the odour of a honeybee colony's food stores on the behaviour of its foragers. Nature. 1969;222(5195):778. https://doi.org/10.1038/222778a0.   DOI
44 Funamoto D. Plant-pollinator interactions in East Asia: a review. J Pollinat Ecol. 2019;25(6):46-68. https://doi.org/10.26786/1920-7603(2019)532.   DOI
45 Henning JA, Teuber LR. Cornbined gas chromatography-electroantennogram characterization of alfalfa floral volatiles recognized by honey bees (Hymenoptera: Apidae). J Econ Entomol. 1992;85(1):226-32. https://doi.org/10.1093/jee/85.1.226.   DOI
46 Hiraiwa MK, Ushimaru A. Low functional diversity promotes niche changes in natural island pollinator communities. Proc Biol Sci. 2017;284(1846):20162218. https://doi.org/10.1098/rspb.2016.2218.   DOI
47 Johnson DL. Communication among honey bees with field experience. Anim Behav. 1967;15(4):487-92. https://doi.org/10.1016/0003-3472(67)90048-6.   DOI
48 R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2021.
49 Omura H, Honda K. Priority of color over scent during flower visitation by adult Vanessa indica butterflies. Oecologia. 2005;142(4):588-96. https://doi.org/10.1007/s00442-004-1761-6.   DOI
50 Proctor M, Yeo P. The pollination of flowers. New York: Taplinger; 1973.
51 Dotterl S, Gluck U, Jurgens A, Woodring J, Aas G. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea. PLoS One. 2014;9(3):e93421. https://doi.org/10.1371/journal.pone.0093421.   DOI
52 Maisonnasse A, Lenoir JC, Beslay D, Crauser D, Le Conte Y. E-β-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS One. 2010;5(10):e13531. https://doi.org/10.1371/journal.pone.0013531.   DOI
53 Johnson SD, More M, Amorim FW, Haber WA, Frankie GW, Stanley DA, et al. The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct Ecol. 2017;31(1):101-15. https://doi.org/10.1111/1365-2435.12753.   DOI
54 Arenas A, Fernandez VM, Farina WM. Floral odor learning within the hive affects honeybees' foraging decisions. Naturwissenschaften. 2007;94(3):218-22. https://doi.org/10.1007/s00114-006-0176-0.   DOI
55 Arenas A, Fernandez VM, Farina WM. Floral scents experienced within the colony affect long-term foraging preferences in honeybees. Apidologie. 2008;39(6):714-22. https://doi.org/10.1051/apido:2008053.   DOI
56 Balkenius A, Rosen W, Kelber A. The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006;192(4):431-7. https://doi.org/10.1007/s00359-005-0081-6.   DOI
57 Borg-Karlson AK, Unelius CR, Valterova I, Nilsson LA. Floral fragrance chemistry in the early flowering shrub Daphne mezereum. Phytochemistry. 1996;41(6):1477-83. https://doi.org/10.1016/0031-9422(95)00801-2.   DOI
58 Chen C, Song Q. Responses of the pollinating wasp Ceratosolen solmsi marchali to odor variation between two floral stages of Ficus hispida. J Chem Ecol. 2008;34(12):1536-44. https://doi.org/10.1007/s10886-008-9558-4.   DOI
59 Dobson HE. Floral volatiles in insect biology. In: Bernays EA, editor. Insect-plant interactions. 5th ed. Boca Raton: CRC press; 2017. p. 47-82.
60 Dobson HE. Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E, editors. Biology of floral scent. Boca Raton: CRC press; 2006. p. 147-98.
61 Dotterl S, Milchreit K, Schaffler I. Behavioural plasticity and sex differences in host finding of a specialized bee species. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2011;197(12):1119-26. https://doi.org/10.1007/s00359-011-0673-2.   DOI
62 Reinhard J, Srinivasan MV, Zhang S. Olfaction: scent-triggered navigation in honeybees. Nature. 2004b;427(6973):411. https://doi.org/10.1038/427411a.   DOI
63 Reinhard J, Srinivasan MV, Guez D, Zhang SW. Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol. 2004a;207(Pt 25):4371-81. https://doi.org/10.1242/jeb.01306.   DOI