Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.06.2018.0118

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement  

Sharifi, Rouhallah (Department of Plant Protection, College of Agriculture and Natural Resources, Razi University)
Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB)
Publication Information
The Plant Pathology Journal / v.34, no.6, 2018 , pp. 459-469 More about this Journal
Abstract
Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.
Keywords
bacterial volatile; enchapsulation; microbe-induced plant volatiles (MIPVs); non-invasive detection; PGPR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ajwa, H. A., Trout, T., Mueller, J., Wilhelm, S., Nelson, S. D., Soppe, R. and Shatley, D. 2002. Application of alternative fumigants through drip irrigation systems. Phytopathology 92:1349-1355.   DOI
2 Aksenov, A. A., Pasamontes, A., Peirano, D. J., Zhao, W., Dandekar, A. M., Fiehn, O., Ehsani, R. and Davis, C. E. 2014. Detection of Huanglongbing disease using differential mobility spectrometry. Anal. Chem. 86:2481-2488.   DOI
3 de Lacy Costello, B. P. J., Ewen, R. J., Gunson, H. E., Ratcliffe, N. M. and Spencer-Phillips, P. T. N. 2000. The development of a sensor system for the early detection of soft rot in stored potato tubers. Meas. Sci. Technol. 11:1685.   DOI
4 Deasy, W., Shepherd, T., Alexander, C. J., Birch, A. N. and Evans, K. A. 2016. Development and validation of a SPME-GC-MS Method for In situ passive sampling of root volatiles from glasshouse-grown broccoli plants undergoing below-ground herbivory by larvae of cabbage root fly, Delia radicum L. Phytochem. Anal. 27:375-393.   DOI
5 Dettmer, K. and Engewald, W. 2002. Adsorbent materials commonly used in air analysis for adsorptive enrichment and thermal desorption of volatile organic compounds. Anal. Bioanal. Chem. 373:490-500.   DOI
6 Effmert, U., Kalderas, J., Warnke, R. and Piechulla, B. 2012. Volatile mediated interactions between bacteria and fungi in the soil. J. Chem. Ecol. 38:665-703.   DOI
7 Eilers, E. J., Pauls, G., Rillig, M. C., Hansson, B. S., Hilker, M. and Reinecke, A. 2015. Novel set-up for low-disturbance sampling of volatile and non-volatile compounds from plant roots. J. Chem. Ecol. 41:253-266.   DOI
8 Gallego, E., Roca, F. J., Perales, J. F. and Guardino, X. 2010. Comparative study of the adsorption performance of a multisorbent bed (Carbotrap, Carbopack X, Carboxen 569) and a Tenax TA adsorbent tube for the analysis of volatile organic compounds (VOCs). Talanta 81:916-924.   DOI
9 Giacomuzzi, V., Cappellin, L., Khomenko, I., Biasioli, F., Schutz, S., Tasin, M., Knight, A. L. and Angeli, S. 2016. Emission of volatile compounds from apple plants infested with Pandemis heparana larvae, antennal response of conspecific adults, and preliminary field trial. J. Chem. Ecol. 42:1265-1280.   DOI
10 Arrarte, E., Garmendia, G., Rossini, C., Wisniewski, M. and Vero, S. 2017. Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol. Control 109:14-20.   DOI
11 Asari, S., Matzen, S., Petersen, M. A., Bejai, S. and Meijer, J. 2016. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens. FEMS Microbiol. Ecol., 92:fiw070.   DOI
12 Attaran, E., Zeier, T. E., Griebel, T. and Zeier, J. 2009. Methyl salicylate production and jasmonate signaling are not essential for systemic acquired resistance in Arabidopsis. Plant Cell 21:954-971.   DOI
13 Bailly, A. and Weisskopf, L. 2012. The modulating effect of bacterial volatiles on plant growth: Current knowledge and future challenges. Plant Signal. Behav. 7:79-85.   DOI
14 Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A. and Liang, L. 2016. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 15:143-182.   DOI
15 Bansode, S. S., Banarjee, S. K., Gaikwad, D. D., Jadhav, S. L. and Thorat, R. M. 2010. Microencapsulation: a review. Int. J. Pharm. Sci. Rev. Res. 1:38-43.
16 Heuskin, S., Lorge, S., Lognay, G., Wathelet, J.-P., Bera, F., Leroy, P., Haubruge, E. and Brostaux, Y. 2012. A semiochemical slow-release formulation in a biological control approach to attract hoverflies. J. Environ. Ecol. 3:72-85.
17 Giacomuzzi, V., Cappellin, L. Nones, S., Khomenko, I., Biasioli, F., Knight, A. L. and Angeli, S. 2017. Diel rhythms in the volatile emission of apple and grape foliage. Phytochemistry 138:104-115.   DOI
18 Halbfeld, C., Baumbach, J. I., Blank, L. M. and Ebert, B. E. 2018. Multi-capillary Column Ion Mobility Spectrometry of Volatile Metabolites for Phenotyping of Microorganisms. In: Synthetic Metabolic Pathways: Methods and Protocols, eds. by M. K. Jensen and J. D. Keasling, pp. 229-258. Springer New York, NY, USA.
19 Heil, M. 2014. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol. 204:297-306.   DOI
20 Huang, R., Li, G. Q., Zhang, J., Yang, L. Che, H. J., Jiang, D. H. and Huang, H. C. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology 101:859-869.   DOI
21 Il'Ichev, A. L., Stelinski, L. L., Williams, D. G. and Gut, L. J. 2006. Sprayable microencapsulated sex pheromone formulation for mating disruption of oriental fruit moth (Lepidoptera: Tortricidae) in Australian peach and pear orchards. J. Econ. Entomol. 99:2048-2054.   DOI
22 Jansen, R. M., Wildt, J., Kappers, I. F., Bouwmeester, H. J., Hofstee, J. W. and van Henten, E. J. 2011. Detection of diseased plants by analysis of volatile organic compound emission. Annu. Rev. Phytopathol. 49:157-174.   DOI
23 Kallenbach, M., Veit, D., Eilers, E. J. and Schuman, M. C. 2015. Application of silicone tubing for robust, simple, highthroughput, and time-resolved analysis of plant volatiles in field experiments. Bio-protocol 5:e1391.
24 Beck, J. J., Porter, N., Cook, D. Gee, W. S., Griffith, C. M., Rands, A. D., Truong, T. V., Smith, L. and San Roman, I. 2015. In-field volatile analysis employing a hand-held portable GC-MS: Emission profiles differentiate damaged and undamaged yellow starthistle flower heads. Phytochem. Anal. 26:395-403.   DOI
25 Bian, L., Sun, X. L., Cai, X. M. and Chen, Z. M. 2014. Slow release of plant volatiles using sol-gel dispensers. J. Econ. Entomol. 107:2023-2029.   DOI
26 Jiang, Y., Ye, J., Veromann, L. L. and Niinemets, U. 2016. Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina) in Populus balsamifera var. suaveolens. Tree Physiol. 36:856-872.   DOI
27 Jisha, K., Vijayakumari, K. and Puthur, J. T. 2013. Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35:1381-1396.   DOI
28 Kallenbach, M., Oh, Y., Eilers, E. J., Veit, D., Baldwin, I. T. and Schuman, M. C. 2014. A robust, simple, high-throughput technique for time-resolved plant volatile analysis in field experiments. Plant J. 78:1060-1072.   DOI
29 Kaplan, I. 2017. A cry for help or sexual perfumes? An alternative hypothesis for wasp attraction to the scent of caterpillarwounded plants. Plant Cell Environ. 40:327-329.   DOI
30 Kfoury, N., Scott, E., Orians, C. and Robbat, A. Jr. 2017. Direct contact sorptive extraction: a robust method for sampling plant volatiles in the field. J. Agric. Food Chem. 65:8501-8509.   DOI
31 Laothawornkitkul, J., Moore, J. P., Taylor, J. E., Possell, M., Gibson, T. D., Hewitt, C. N. and Paul, N. D. 2008. Discrimination of plant volatile signatures by an electronic nose: A potential technology for plant pest and disease monitoring. Environ. Sci. Technol. 42:8433-8439.   DOI
32 Ledger, T., Rojas, S., Timmermann, T., Pinedo, I., Poupin, M. J., Garrido, T., Richter, P., Tamayo, J. and Donoso, R. 2016. Volatile-mediated effects predominate in Paraburkholderia phytofirmans growth promotion and salt stress tolerance of Arabidopsis thaliana. Front. Microbiol. 7:1838.
33 Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Boller, T., Eberl, L. and Weisskopf, L. 2011. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 13:3047-3058.   DOI
34 Bian, L., Cai, X. M., Luo, Z. X., Li, Z. Q., Xin, Z. J. and Chen, Z. M. 2018. Design of an attractant for Empoasca onukii (Hemiptera: Cicadellidae) based on the volatile components of fresh tea leaves. J. Econ. Entomol. 111:629-636.   DOI
35 Biasioli, F., Yeretzian, C., Mark, T. D., Dewulf, J. and Van Langenhove, H. 2011. Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trends Anal. Chem. 30:1003-1017.   DOI
36 Biondi, E., Blasioli, S., Galeone, A., Spinelli, F., Cellini, A., Lucchese, C. and Braschi, I. 2014. Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta 129:422-430.   DOI
37 Boukaew, S., Plubrukam, A. and Prasertsan, P. 2013. Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. BioControl 58:471-482.   DOI
38 Buckley, A. M. and Greenblatt, M. 1994. The sol-gel preparation of silica gels. J. Chem. Educ. 71:599-603.   DOI
39 Cai, X., Bian, L., Xu, X., Luo, Z., Li, Z. and Chen, Z. 2017. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Sci. Rep. 7:41818.   DOI
40 Lei, Y., Popplewell, L. M. and Huang, X. 2015. Microcapsules containing active ingredients. Google Patents: pp: US20150164751A20150164751.
41 Lin, Y., Hussain, M., Avery, P. B., Qasim, M., Fang, D. and Wang, L. 2016. Volatiles from plants induced by multiple aphid attacks promote conidial performance of Lecanicillium lecanii. PLoS One 11:e0151844.   DOI
42 Lough, F., Perry, J. D., Stanforth, S. P. and Dean, J. R. 2017. Detection of exogenous VOCs as a novel in vitro diagnostic technique for the detection of pathogenic bacteria. Trends Anal. Chem. 87:71-81.   DOI
43 Macias-Rubalcava, M. L., Sanchez-Fernandez, R. E., Roque-Flores, G., Lappe-Oliveras, P. and Medina-Romero, Y. M. 2018. Volatile organic compounds from Hypoxylon anthochroum endophytic strains as postharvest mycofumigation alternative for cherry tomatoes. Food Microbiol. 76:363-373.   DOI
44 Martel, J. W., Alford, A. R. and Dickens, J. 2007. Evaluation of a novel host plant volatile-based attracticide for management of Colorado potato beetle, Leptinotarsa decemlineata (Say). Crop Protect. 26:822-827.   DOI
45 Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., Villa, P., Stroppiana, D., Boschetti, M., Goulart, L. R., Davis, C. E. and Dandekar, A. M. 2015. Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35:1-25.   DOI
46 Materic, D., Bruhn, D., Turner, C., Morgan, G., Mason, N. and Gauci, V. 2015. Methods in plant foliar volatile organic compounds research. Appl. Plant Sci. 3:1500044.   DOI
47 Minnich, M. 1993. Behavior and determination of volatile organic compounds in soil: A literature review. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/R-93/140 (NTIS PB94100153). URL https://cfpub.epa.gov/si/si_public_record_Report.cfm?Lab=ORD&dirEntryID=45050.
48 Niinemets, U. and Monson, R. K. 2013. Biology, controls and models of tree volatile organic compound emissions. 5th ed. Springer Netherlands. 547 pp.
49 Mithofer, A. and Boland, W. 2016. Do you speak chemistry? Small chemical compounds represent the evolutionary oldest form of communication between organisms. EMBO Rep. 17:626-629.   DOI
50 Moalemiyan, M., Vikram, A., Kushalappa, A. and Yaylayan, V. 2006. Volatile metabolite profiling to detect and discriminate stem-end rot and anthracnose diseases of mango fruits. Plant Pathol. 55:792-802.   DOI
51 Ossowicki, A., Jafra, S. and Garbeva, P. 2017. The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS One 12:e0174362.   DOI
52 Park, Y. S., Dutta, S., Ann, M., Raaijmakers, J. M. and Park, K. 2015. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds. Biochem. Biophys. Res. Commun. 461:361-365.   DOI
53 Piechulla, B. and Schnitzler, J. P. 2016. Circumvent $CO_2$ effects in volatile-based microbe-plant interactions. Trends Plant Sci. 21:541-543.   DOI
54 Piechulla, B., Lemfack, M. C. and Kai, M. 2017. Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ. 40:2042-2067.   DOI
55 Portillo-Estrada, M., Kazantsev, T., Talts, E., Tosens, T. and Niinemets, U. 2015. Emission timetable and quantitative patterns of wound-induced volatiles across different leaf damage treatments in Aspen (Populus Tremula). J. Chem. Ecol. 41:1105-1117.   DOI
56 Quintana-Rodriguez, E., Morales-Vargas, A. T., Molina-Torres, J., Adame-Alvarez, R. M., Acosta-Gallegos, J. A. and Heil, M. 2015. Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum. J. Ecol. 103:250-260.   DOI
57 Cheng, X., Cordovez, V., Etalo, D. W., van der Voort, M. and Raaijmakers, J. M. 2016. Role of the GacS sensor kinase in the regulation of volatile production by plant growth-promoting Pseudomonas fluorescens SBW25. Front. Plant Sci. 7:1706.
58 Castulo-Rubio, D. Y., Alejandre-Ramirez, N. A., del Carmen Orozco-Mosqueda, M., Santoyo, G., Macias-Rodriguez, L. I. and Valencia-Cantero, E. 2015. Volatile organic compounds produced by the rhizobacterium Arthrobacter agilis UMCV2 modulate Sorghum bicolor (strategy II plant) morphogenesis and SbFRO1 transcription In Vitro. J. Plant Growth Regul. 34:611-623.   DOI
59 Cellini, A., Biondi, E., Blasioli, S., Rocchi, L., Farneti, B., Braschi, I., Savioli, S., Rodriguez-Estrada, M., Biasioli, F. and Spinelli, F. 2016. Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Ann. Appl. Biol. 168:409-420.   DOI
60 Chan, A. S., del Valle, J., Lao, K., Malapit, C., Chua, M. and So, R. C. 2009. Evaluation of silica Sol-Gel microcapsule for the controlled release of insect repellent, N,N-Diethyl-2-methoxybenzamide, on Cotton. Philipp. J. Sci. 138:13-21.
61 Choi, H. K., Song, G. C., Yi, H. S. and Ryu, C. M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 40:882-892.   DOI
62 Chung, J. H., Song, G. C. and Ryu, C. M. 2016. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 90:677-687.   DOI
63 Contreras, J. A., Murray, J. A., Tolley, S. E., Oliphant, J. L., Tolley, H. D., Lammert, S. A., Lee, E. D., Later, D. W. and Lee, M. L. 2008. Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J. Am. Soc. Mass Spectrom. 19:1425-1434.   DOI
64 Ruzsanyi, V., Fischer, L., Herbig, J., Ager, C. and Amann, A. 2013. Multi-capillary-column proton-transfer-reaction time-of-flight mass spectrometry. J. Chromatogr. A 1316:112-118.   DOI
65 Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J. and Turlings, T. C. J. 2005. Recruitment of entomopathogenic nematodes by insectdamaged maize roots. Nature 434:732-737.   DOI
66 Niinemets, U., Kannaste, A. and Copolovici, L. 2013. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Front. Plant Sci. 4:262.
67 Rosenberg, M., Kopelman, I. J. and Talmon, Y. 1990. Factors affecting retention in spray-drying microencapsulation of volatile materials. J. Agric. Food Chem. 38:1288-1294.   DOI
68 Ryu, C. M. 2015. Bacterial Volatiles as Airborne Signals for Plants and Bacteria. In: Principles of Plant-Microbe Interactions, ed. by B. Lugtenberg, pp. 53-61. Springer, Switzerland.
69 Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:4927-4932.   DOI
70 Sharifi, R. and Ryu, C. M. 2016. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Front. Microbiol. 7:196.
71 Sharifi, R. and Ryu, C. M. 2018a. Revisiting bacterial volatilemediated plant growth promotion: Lessons from the past and objectives for the future. Ann. Bot. 122:349-358.   DOI
72 Sharifi, R. and Ryu, C. M. 2018b. Sniffing bacterial volatile compounds for healthier plants. Curr. Opin. Plant Biol. 44:88-97.   DOI
73 Wan, M., Li, G., Zhang, J., Jiang, D. and Huang, H. C. 2008. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control 46:552-559.   DOI
74 Sharifi, R., Lee, S. M. and Ryu, C. M. 2018. Microbe-induced plant volatiles. New Phytol. 220:684-691.   DOI
75 Shiojiri, K., Ozawa, R., Matsui, K., Sabelis, M. W. and Takabayashi, J. 2012. Intermittent exposure to traces of green leaf volatiles triggers a plant response. Sci. Rep. 2:378.   DOI
76 Song, G. C. and Ryu, C. M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14:9803-9819.   DOI
77 Wheatley, R. E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie van Leeuwenhoek 81:357-364.   DOI
78 Wilson, A. D., Lester, D. G. and Oberle, C. S. 2004. Development of conductive polymer analysis for the rapid detection and identification of phytopathogenic microbes. Phytopathology 94:419-431.   DOI
79 Wittgenstein, L. 1922. Logisch-Philosophische Abhandlung. Kegan Paul.
80 Xiao, Z., Liu, W., Zhu, G., Zhou, R. and Niu, Y. 2014. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. J. Sci. Food Agric. 94:1482-1494.   DOI
81 Xie, X., Zhang, H. and Pare, P. W. 2009. Sustained growth promotion in Arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis (GB03). Plant Signal. Behav. 4:948-953.   DOI
82 Yazdani, M. and Baker, G. 2017. A plant volatile-based attractant formulation is not attractive to Diadegma semiclausum (Hymenoptera: Ichneumonidae). Aust. Entomol. 57:359-364.
83 Spinelli, F., Cellini, A., Vanneste, J. L., Rodriguez-Estrada, M. T., Costa, G., Savioli, S., Harren, F. J. M. and Cristescu, S. M. 2012. Emission of volatile compounds by Erwinia amylovora: biological activity in vitro and possible exploitation for bacterial identification. Trees 26:141-152.   DOI
84 Yi, H. S., Heil, M., Adame-Alvarez, R. M., Ballhorn, D. J. and Ryu, C. M. 2009. Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiol. 151:2152-2161.   DOI
85 Yu, S. M. and Lee, Y. H. 2013. Plant growth promoting rhizobacterium Proteus vulgaris JBLS202 stimulates the seedling growth of Chinese cabbage through indole emission. Plant Soil 370:485-495.   DOI
86 Yu, Y. T., Liu, L. N., Zhu, X. L. and Kong, X. Z. 2012. Microencapsulation of dodecyl acetate by complex coacervation of whey protein with acacia gum and its release behavior. Chin. Chem. Lett. 23:847-850.   DOI
87 Song, G. C., Choi, H. K. and Ryu, C. M. 2015. Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringae pv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis. Front. Plant Sci. 6:821.
88 Soottitantawat, A., Yoshii, H., Furuta, T., Ohkawara, M. and Linko, P. 2003. Microencapsulation by spray drying: Influence of emulsion size on the retention of volatile compounds. J. Food Sci. 68:2256-2262.   DOI
89 Stenberg, J. A., Heil, M., Ahman, I. and Bjorkman, C. 2015. Optimizing crops for biocontrol of pests and disease. Trends Plant Sci. 20:698-712.   DOI
90 Tahir, H. A., Gu, Q., Wu, H., Raza, W., Hanif, A., Wu, L., Colman, M. V. and Gao, X. 2017. Plant growth promotion by volatile organic compounds produced by Bacillus subtilis SYST2. Front. Microbiol. 8:171.
91 Tholl, D., Boland, W., Hansel, A., Loreto, F., Rose, U. S. and Schnitzler, J. P. 2006. Practical approaches to plant volatile analysis. Plant J. 45:540-560.   DOI
92 Turlings, T. T. C. and Erb, M. 2018. Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annu. Rev. Entomol. 63:433-452.   DOI
93 Velazquez-Becerra, C., Macias-Rodriguez, L. I., Lopez-Bucio, J., Altamirano-Hernandez, J., Flores-Cortez, I. and Valencia-Cantero, E. 2011. A volatile organic compound analysis from Arthrobacter agilis identifies dimethylhexadecylamine, an amino-containing lipid modulating bacterial growth and Medicago sativa morphogenesis in vitro. Plant Soil 339:329-340.   DOI
94 Zhu, H., Wang, X., Reding, M. E. and Locke, J. C. 2011. Distribution of chemical and microbial pesticides delivered through drip irrigation systems. In: Pesticides - Formulations, Effects, Fate, ed. by M. Stoytcheva, pp. 155-180. InTech, Croatia.
95 Zada, A., Falach, L. and Byers, J. A. 2009. Development of solgel formulations for slow release of pheromones. Chemoecology 19:37-45.   DOI