• Title/Summary/Keyword: plant potassium channel

Search Result 7, Processing Time 0.023 seconds

Characteristics and functions of shaker like potassium channels in rice (벼 shaker like potassium channel들의 특성과 기능)

  • Hwang, Hyun-Sik;Kim, Hyun-Mi;Jeong, Min-A;Kim, Dong-Hern;Byun, Myung-Ok;Kim, Beom-Gi
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.539-548
    • /
    • 2010
  • Potassium ($K^+$) is one of the most abundant cations in higher plant. It comprises about 10% of plant dry weight and it plays roles in numerous functions such as osmo- and turgor regulation, charge balance of plasma membrane and control of stomata and organ movement. Several potassium transporters and potassium channels regulate $K^+$ homeostasis in response to $K^+$ uptake systems. In this review, we describe the biological, biochemical and physiological characteristics of shaker like potassium channels in higher plant. Especially, we searched the rice genome databases and analysized expressed genes, genome structures and protein domain characteristics of shaker like potassium channels.

The Shaker Type Potassium Channel, GORK, Regulates Abscisic Acid Signaling in Arabidopsis

  • Lim, Chae Woo;Kim, Sang Hee;Choi, Hyong Woo;Luan, Sheng;Lee, Sung Chul
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.684-691
    • /
    • 2019
  • Evolution of adaptive mechanisms to abiotic stress is essential for plant growth and development. Plants adapt to stress conditions by activating the abscisic acid (ABA) signaling pathway. It has been suggested that the ABA receptor, clade A protein phosphatase, SnRK2 type kinase, and SLAC1 anion channel are important components of the ABA signaling pathway. In this study, we report that the shaker type potassium (K+) channel, GORK, modulates plant responses to ABA and abiotic stresses. Our results indicate that the full length of PP2CA is needed to interact with the GORK C-terminal region. We identified a loss of function allele in gork that displayed ABA-hyposensitive phenotype. gork and pp2ca mutants showed opposite responses to ABA in seed germination and seedling growth. Additionally, gork mutant was tolerant to the NaCl and mannitol treatments, whereas pp2ca mutant was sensitive to the NaCl and mannitol treatments. Thus, our results indicate that GORK enhances the sensitivity to ABA and negatively regulates the mechanisms involved in high salinity and osmotic stresses via PP2CA-mediated signals.

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology

  • Pozdnyakov, Ilya;Matantseva, Olga;Skarlato, Sergei
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.315-326
    • /
    • 2021
  • Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.

The uniqueness of the plant mitochondrial potassium channel

  • Pastore, Donato;Soccio, Mario;Laus, Maura Nicoletta;Trono, Daniela
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.391-397
    • /
    • 2013
  • The ATP-inhibited Plant Mitochondrial $K^+$ Channel ($PmitoK_{ATP}$) was discovered about fifteen years ago in Durum Wheat Mitochondria (DWM). $PmitoK_{ATP}$ catalyses the electrophoretic $K^+$ uniport through the inner mitochondrial membrane; moreover, the co-operation between $PmitoK_{ATP}$ and $K^+/H^+$ antiporter allows such a great operation of a $K^+$ cycle to collapse mitochondrial membrane potential (${\Delta}{\Psi}$) and ${\Delta}pH$, thus impairing protonmotive force (${\Delta}p$). A possible physiological role of such ${\Delta}{\Psi}$ control is the restriction of harmful reactive oxygen species (ROS) production under environmental/oxidative stress conditions. Interestingly, DWM lacking ${\Delta}p$ were found to be nevertheless fully coupled and able to regularly accomplish ATP synthesis; this unexpected behaviour makes necessary to recast in some way the classical chemiosmotic model. In the whole, $PmitoK_{ATP}$ may oppose to large scale ROS production by lowering ${\Delta}{\Psi}$ under environmental/oxidative stress, but, when stress is moderate, this occurs without impairing ATP synthesis in a crucial moment for cell and mitochondrial bioenergetics.

Sophora flavescens Extracts Have Therapeutic Effects on Overactive Bladder Syndrome by Potentiation of Large-Conductance Calcium-Activated Potassium Channel

  • Jo, Heeji;Lee, Hyun Jun;Jang, Sung Joo;Moh, Sang Hyun;Cheong, Jae Hoon;Park, Chul-Seung
    • Natural Product Sciences
    • /
    • v.27 no.3
    • /
    • pp.193-200
    • /
    • 2021
  • Sophora flavescens Ait. (Fabaceae) is a medicinal plant widely founded in Northeast Asia, and its dried root (Kushen) has been used as a traditional Chinese herbal medicine. The therapeutic effects of Kushen in micturition disorder was not investigated comprehensively yet. In the present study, we examined and compared the efficacy of three batches of Kushen extract using different ethanol content through an in vitro cell-based assay. Among them, we chose the batch with the highest efficacy and augmented the volume of extract for industrial purpose. The bulk extract was examined in its efficacy in the in vitro cell-based assay, and the therapeutic effects through an in vivo behavioral assay of OAB rats. The main components of the extracts were analyzed by liquid chromatography. Cytotoxicity of the extracts was investigated by MTT assay. The overall efficacy of the extract was as much as, or more than, kurarinone, a potent BKCa channel activator. Thus, the extract was a potent relaxant of urinary smooth muscle by upregulating the activity of BKCa channel. The Kushen extract could be explored as an alternative medicine against overactive bladder patients indicating severe dysfunction of BKCa channel.

Biological Effect and Chemical Composition Variation During Self-Fermentation of Stored Needle Extracts from Pinus densiflora Siebold & Zucc.

  • Paudyal, Dilli P.;Park, Ga-Young;Hwang, In-Deok;Kim, Dong-Woon;Cheong, Hyeon-Sook
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.313-322
    • /
    • 2007
  • Extract of Japanese red pine needles has been used in Asia pacific regions since long periods believing its valuable properties as tonic and ability of curing diseases of unidentified symptoms. Some selective compounds present in the extract and their effects were analyzed. Carbohydrates and vitamin c were identified using HPLC; terpenoid compounds by GC-MS; anti-bacterial analysis by paper discs, plates count and gastrointestinal motility by whole cell patch clamp. The extract is a mixture of compounds therefore its diverse effect was expected. Self-fermentation in extract proceeds after spontaneous appearance of yeast strains without inoculation. Effects and composition of the extract vary with varying period of self-fermentation. Extract inhibits the growth of bacteria dose dependently exhibiting its antibacterial properties however effectiveness increases with increase in fermentation period. The extract also can modulate gastrointestinal motility in murine small intestine by modulating pace maker currents in ICC mediated through ATP sensitive potassium channel.

Inhibitory Effect of Genistein on Agonist-Induced Modulation of Vascular Contractility

  • Je, Hyun Dong;Sohn, Uy Dong
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • The present study was undertaken to determine whether treatment with genistein, the plant-derived estrogen-like compound influences agonist-induced vascular smooth muscle contraction and, if so, to investigate related mechanisms. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Genistein completely inhibited KCl-, phorbol ester-, phenylephrine-, fluoride- and thromboxane $A_2$-induced contractions. An inactive analogue, daidzein, completely inhibited only fluoride-induced contraction regardless of endothelial function, suggesting some difference between the mechanisms of RhoA/Rho-kinase activators such as fluoride and thromboxane $A_2$. Furthermore, genistein and daidzein each significantly decreased phosphorylation of MYPT1 at Thr855 had been induced by a thromboxane $A_2$ mimetic. Interestingly, iberiotoxin, a blocker of large-conductance calcium-activated potassium channels, did not inhibit the relaxation response to genistein or daidzein in denuded aortic rings precontracted with fluoride. In conclusion, genistein or daidzein elicit similar relaxing responses in fluoride-induced contractions, regardless of tyrosine kinase inhibition or endothelial function, and the relaxation caused by genistein or daidzein was not antagonized by large conductance $K_{Ca}$-channel inhibitors in the denuded muscle. This suggests that the RhoA/Rho-kinase pathway rather than $K^+$- channels are involved in the genistein-induced vasodilation. In addition, based on molecular and physiological results, only one vasoconstrictor fluoride seems to be a full RhoA/Rho-kinase activator; the others are partial activators.