Browse > Article
http://dx.doi.org/10.4490/algae.2021.36.12.2

Consensus channelome of dinoflagellates revealed by transcriptomic analysis sheds light on their physiology  

Pozdnyakov, Ilya (Institute of Cytology, Russian Academy of Sciences)
Matantseva, Olga (Institute of Cytology, Russian Academy of Sciences)
Skarlato, Sergei (Institute of Cytology, Russian Academy of Sciences)
Publication Information
ALGAE / v.36, no.4, 2021 , pp. 315-326 More about this Journal
Abstract
Ion channels are membrane protein complexes mediating passive ion flux across the cell membranes. Every organism has a certain set of ion channels that define its physiology. Dinoflagellates are ecologically important microorganisms characterized by effective physiological adaptability, which backs up their massive proliferations that often result in harmful blooms (red tides). In this study, we used a bioinformatics approach to identify homologs of known ion channels that belong to 36 ion channel families. We demonstrated that the versatility of the dinoflagellate physiology is underpinned by a high diversity of ion channels including homologs of animal and plant proteins, as well as channels unique to protists. The analysis of 27 transcriptomes allowed reconstructing a consensus ion channel repertoire (channelome) of dinoflagellates including the members of 31 ion channel families: inwardly-rectifying potassium channels, two-pore domain potassium channels, voltage-gated potassium channels (Kv), tandem Kv, cyclic nucleotide-binding domain-containing channels (CNBD), tandem CNBD, eukaryotic ionotropic glutamate receptors, large-conductance calcium-activated potassium channels, intermediate/small-conductance calcium-activated potassium channels, eukaryotic single-domain voltage-gated cation channels, transient receptor potential channels, two-pore domain calcium channels, four-domain voltage-gated cation channels, cation and anion Cys-loop receptors, small-conductivity mechanosensitive channels, large-conductivity mechanosensitive channels, voltage-gated proton channels, inositole-1,4,5-trisphosphate receptors, slow anion channels, aluminum-activated malate transporters and quick anion channels, mitochondrial calcium uniporters, voltage-dependent anion channels, vesicular chloride channels, ionotropic purinergic receptors, animal volage-insensitive cation channels, channelrhodopsins, bestrophins, voltage-gated chloride channels H+/Cl- exchangers, plant calcium-permeable mechanosensitive channels, and trimeric intracellular cation channels. Overall, dinoflagellates represent cells able to respond to physical and chemical stimuli utilizing a wide range of G-protein coupled receptors- and Ca2+-dependent signaling pathways. The applied approach not only shed light on the ion channel set in dinoflagellates, but also provided the information on possible molecular mechanisms underlying vital cellular processes dependent on the ion transport.
Keywords
channelome; dinoflagellates; ion channels; transcriptomes;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lodh, S., Yano, J., Valentine, M. S. & Van Houten, J. L. 2016. Voltage-gated calcium channels of Paramecium cilia. J. Exp. Biol. 219:3028-3038.   DOI
2 Lopez, J. J., Jardin, I., Albarran, L., Sanchez-Collado, J., Cantonero, C., Salido, G. M., Smani, T. & Rosado, J. A. 2020. Molecular basis and regulation of store-operated calcium entry. Adv. Exp. Med. Biol. 1131:445-469.   DOI
3 Martinac, B., Saimi, Y. & Kung, C. 2008. Ion channels in microbes. Physiol. Rev. 88:1449-1490.   DOI
4 Mobasheri, A., Matta, C., Uzieliene, I., Budd, E., Martin-Vasallo, P. & Bernotiene, E. 2019. The chondrocyte channelome: a narrative review. Joint Bone Spine 86:29-35.   DOI
5 Nguyen, L. -T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32:268-274.   DOI
6 Burkholder, J. M., Glibert, P. M. & Skelton, H. 2008. Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77-93.   DOI
7 Tsim, S. T., Wong, J. T. & Wong, Y. H. 1997. Calcium ion dependency and the role of inositol phosphates in melatonin-induced encystment of dinoflagellates. J. Cell Sci. 110:1387-1393.   DOI
8 Keeling, P. J., Burki, F., Wilcox, H. M., Allam, B., Allen, E. E., Amral-Zettler, L. A., Armbrust, E. V., Archibald, J. M., Bharti, A. K., Bell, C. J., Beszteri, B., Bidle, K. D., Cameron, C. T., Campbell, L., Caron, D. A., Cattolico, R. A., Collier, J. L., Coyne, K., Davy, S. K., Deschamps, P., Dyhrman, S. T., Edvardsen, B., Gates, R. D., Gobler, C. J., Greenwood, S. J., Guida, S. M., Jacobi, J. L., Jakobsen, K. S., James, E. R., Jenkins, B., John, U., Johnson, M. D., Juhl, A. R., Kamp, A., Katz, L. A., Kiene, R., Kudryavtsev, A., Leander, B. S., Lin, S., Lovejoy, C., Lynn, D., Marchetti, A., McManus, G., Nedelcu, A. M., Menden-Deuer, S., Miceli, C., Mock, T., Montresor, M., Moran, M. A., Murray, S., Nadathur, G., Nagai, S., Ngam, P. B., Palenik, B., Pawlowski, J., Petroni, G., Piganeau, G., Posewitz, M. C., Rengefors, K., Romano, G., Rumpho, M. E., Rynearson, T., Schilling, K. B., Schroeder, D. C., Simpson, A. G. B., Slamovits, C. H., Smith, D. R., Smith, G. J., Smith, S. R., Sosik, H. M., Stief, P., Theriot, E., Twary, S. N., Umale, P. E., Vaulot, D., Wawrik, B., Wheeler, G. L., Wilson, W. H., Xu, Y., Zingone, A. & Worden, A. Z. 2014. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12:e1001889.   DOI
9 Krapp, A., David, L. C., Chardin, C., Girin, T., Marmange, A., Leprince, A.-S., Chaillou, S., Ferrario-Mery, S., Meyer, C. & Daniel-Vedele, F. 2014. Nitrate transport and signalling in Arabidopsis. J. Exp. Bot. 65:789-798.   DOI
10 Oami, K., Sibaoka, T. & Naitoh, Y. 1988. Tentacle regulating potentials in Noctiluca miliaris: their generation sites and ionic mechanisms. J. Comp. Physiol. A 162:179-185.   DOI
11 Van Dolah, F. M., Lidie, K. B., Morey, J. S., Brunelle, S. A., Ryan, J. C., Monroe, E. A. & Haynes, B. L. 2007. Microarray analysis of diurnal- and circadian-regulated genes in the Florida red-tide dinoflagellate Karenia brevis (Dinophyceae). J. Phycol. 43:741-752.   DOI
12 Wright, J. R., Amisten, S., Goodall, A. H. & Mahaut-Smith, M. P. 2016. Transcriptomic analysis of the ion channe-lome of human platelets and megakaryocytic cell lines. Thromb. Haemost. 116:272-284.   DOI
13 Plattner, H. 2014. Calcium regulation in the protozoan model, Paramecium tetraurelia. J. Eukaryot. Microbiol. 61:95-114.   DOI
14 Yazawa, M., Ferrante, C., Feng, J., Mio, K., Ogura, T., Zhang, M., Lin, P.-H., Pan, Z., Komazaki, S., Kato, K., Nishi, M., Zhao, X., Weisleder, N., Sato, C., Ma, J. & Takeshima, H. 2007. TRIC channels essential for Ca2+ handling in intracellular stores. Nature 448:78-82.   DOI
15 Okamoto, O. K. & Hastings, J. W. 2003. Novel dinoflagellate clock-related genes identified through microarray analysis. J. Phycol. 39:519-526.   DOI
16 Pozdnyakov, I. A. & Skarlato, S. O. 2015. Analysis of the dinoflagellate Prorocentrum minimum transcriptome: identifying the members of the voltage-gated cation channel superfamily. Cell Tissue Biol. 9:483-492.   DOI
17 Mukherjee, A., Lau, C. S., Walker, C. E., Rai, A. K., Prejean, C. I., Yates, G., Emrich-Mills, T., Lemoine, S. G., Vinyard, D. J., Mackinder, L. C. M. & Moroney, J. V. 2019. Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U. S. A. 116:16915-16920.   DOI
18 Sibaoka, T. & Eckert, R. 1967. An electrophysiological study of the tentacle-regulating potentials in Noctiluca. J. Exp. Biol. 47:447-459.   DOI
19 Stelly, N., Mauger, J. -P., Claret, M. & Adoutte, A. 1991. Cortical alveoli of Paramecium: a vast submembranous calcium storage compartment. J. Cell Biol. 113:103-112.   DOI
20 Taylor, A. R., Chrachri, A., Wheeler, G., Goddard, H. & Brownlee, C. 2011. A voltage-gated H+ channel underlying pH homeostasis in calcifying coccolithophores. PLoS Biol. 9:e1001085.   DOI
21 Yu, F. H., Yarov-Yarovoy, V., Gutman, G. A. & Catterall, W. A. 2005. Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol. Rev. 57:387-395.   DOI
22 Rodriduez, J. D., Haq, S., Bachvaroff, T., Nowak, K. F., Nowak, S. J., Morgan, D., Cherny, V. V., Sapp, M. M., Bernstein, S., Bolt, A., DeCoursey, T. E., Place, A. R. & Smith, S. M. E. 2017. Identification of a vacuolar proton channel that triggers the bioluminescent flash in dinoflagellates. PLoS ONE 12:e0171594.   DOI
23 Pozdnyakov, I., Matantseva, O. & Skarlato, S. 2018. Diversity and evolution of four-domain voltage-gated cation channels of eukaryotes and their ancestral functional determinants. Sci. Rep. 8:3539.   DOI
24 Pozdnyakov, I., Matantseva, O., Negulyaev, Y. & Skarlato, S. 2014. Obtaining spheroplasts of armored dinoflagellates and first single-channel recordings of their ion channels using patch-clamping. Mar. Drugs 12:4743-4755.   DOI
25 Pozdnyakov, I., Safonov, P. & Skarlato, S. 2020. Diversity of voltage-gated potassium channels and cyclic nucleotide-binding domain-containing channels in eukaryotes. Sci. Rep. 10:17758.   DOI
26 Pozdnyakov, I. & Skarlato, S. 2012. Dinoflagellate amphiesma at different stages of the life cycle. Protistology 7:108-115.
27 Rambaut, A. & Drummond, A. J. 2015. FigTree, ver. 1.4. 2. The Author.
28 Schneider, F., Grimm, C. & Hegemann, P. 2015. Biophysics of channelrhodopsin. Annu. Rev. Physiol. 44:167-186.
29 Sharma, T., Dreyer, I., Kochian, L. & Pineros, M. A. 2016. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front. Plant. Sci. 7:1488.   DOI
30 Telesh, I., Schubert, H. & Skarlato, S. 2021. Abiotic stability promotes dinoflagellate blooms in marine coastal ecosystems. Estuar. Coast. Shelf Sci. 251:107239.   DOI
31 Tikhonov, D. B. & Zhorov, B. S. 2005. Modeling P-loops domain of sodium channel: homology with potassium channels and interaction with ligands. Biophys. J. 88:184-197.   DOI
32 Saldarriaga, J. F. & 'Max' Taylor, F. J. R. 2017. Dinoflagellata. In Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. (Eds.) Handbook of the Protists. Springer, Cham, pp. 625-678.
33 Barrett-Jolley, R., Lewis, R., Fallman, R. & Mobasheri, A. 2010. The emerging chondrocyte channelome. Front. Physiol. 1:135.   DOI
34 Kaczmarek, L. K., Aldrich, R. W., Chandy, K. G., Grissmer, S., Wei, A. D. & Wulff, H. 2017. International union of basic and clinical pharmacology. C. Nomenclature and properties of calcium-activated and sodium-activated potassium channels. Pharmacol. Rev. 69:1-11.   DOI
35 Eckert, R. 1965. Bioelectric control of bioluminescence in the dinoflagellate Noctiluca. I. Specific nature of triggering events. Science 147:1140-1142.   DOI
36 Fujiu, K., Nakayama, Y., Yanagisawa, A., Sokabe, M. & Yoshimura, K. 2009. Chlamydomonas CAV2 encodes a voltage-dependent calcium channel required for the flagellar waveform conversion. Curr. Biol. 19:133-139.   DOI
37 Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
38 Hastings, J. W. 2013. Circadian rhythms in dinoflagellates: what is the purpose of synthesis and destruction of proteins? Microorganisms 1:26-32.   DOI
39 Helliwell, K. E., Chrachri, A., Koester, J. A., Wharam, S., Verret, F., Taylor, A. R., Wheeler, G. L. & Brownlee, C. 2019. Alternative mechanisms for fast Na+/Ca2+ signaling in eukaryotes via novel class of single-domain voltage-gated channels. Curr. Biol. 29:1503-1511.   DOI
40 Hilger, D., Masureel, M. & Kobilka, B. K. 2018. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25:4-12.   DOI
41 Berdieva, M., Safonov, P. & Matantseva, O. 2019. Ultrastructural aspects of ecdysis in naked dinoflagellate Amphidinium carterae. Protistology 13:57-63.
42 Berridge, M. J., Bootman, M. D. & Roderick, H. L. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4:517-529.   DOI
43 Brunet, T. & Arendt, D. 2016. From damage response to action potentials: early evolution of neuronal and contractile modules in stem eukaryotes. Phil. Trans. R. Soc. Lond. B Biol. Sci. 371:20150043.   DOI
44 Cembella, A. D. 2003. Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia 42:420-447.   DOI
45 Craven, K. B. & Zagotta, W. N. 2006. CNG and HCN channels: two peas, one pod. Annu. Rev. Physiol. 68:375-401.   DOI
46 Jaiteh, M., Taly, A. & Henin, J. 2016. Evolution of pentameric ligand-gated ion channels: pro-loop receptors. PLoS ONE 11:e0151934.   DOI
47 Anderson, C. R., Berdalet, E., Kudela, R. M., Cusak, C. K., Silke, J., O'Rourke, E., Dugan, D., McCammon, M., Newton, J. A., Moore, S. K., Paige, K., Ruberg, S., Morrison, J. R., Kirkpatrick, B., Hubbard, K. & Morell, J. 2019. Scaling up from regional case studies to a global Harmful Algal Bloom observing system. Front. Mar. Sci. 6:250.   DOI
48 Skarlato, S. O., Telesh, I. V., Matantseva, O. V., Pozdnyakov, I. A., Berdieva, M. A., Schubert, H., Filatova, N. A., Knyazev, N. A. & Pechkovskaya, S. A. 2018. Studies of bloom-forming dinoflagellates Prorocentrum minimum in fluctuating environment: contribution to aquatic ecology, cell biology and invasion theory. Protistology 12:113-157.
49 Smith, S. M. E., Morgan, D., Musset, B., Cherny, V. V., Place, A. R., Hastings, J. W. & DeCoursey, T. E. 2011. Voltage-gated proton channel in a dinoflagellate. Proc. Natl. Acad. Sci. U. S. A. 108:18162-18167.   DOI
50 Taylor, A. R., Brownlee, C. & Wheeler, G. L. 2012. Proton channels in algae: reasons to be excited. Trends Plant Sci. 17:675-684.   DOI
51 Katoh, K., Rozewicki, J. & Yamada, K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20:1160-1166.   DOI
52 Khanaychenko, A. N., Telesh, I. V. & Skarlato, S. O. 2019. Bloom-forming potentially toxic dinoflagellates Prorocentrum cordatum in marine plankton food webs. Protistology 13:95-125.
53 Hille, B. 2001. Ion channels of excitable membranes. 3rd ed. Sinauer Associates, Sunderland, MA, 816 pp.
54 Guo, X., Wang, Z., Liu, L. & Li, Y. 2021. Transcriptome and metabolome analyses of cold and darkness-induced pellicle cysts of Scrippsiella trochoidea. BMC Genomics 22:526.   DOI
55 Dagenais-Bellefeuille, S. & Morse, D. 2013. Putting the N in dinoflagellates. Front. Microbiol. 4:369.   DOI
56 Dominguez, D. C. 2004. Calcium signalling in bacteria. Mol. Microbiol. 54:291-297.   DOI
57 Kigundu, G., Cooper, J. L. & Smith, S. M. E. 2018. Hv1 proton channels in dinoflagellates: not just for bioluminescence? J. Eukaryot. Microbiol. 65:928-933.   DOI
58 Horiguchi, T., Kawai, H., Kubota, M., Takahashi, T. & Watanabe, M. 1999. Phototactic responses of four marine dinoflagellates with different types of eyespot and chloroplast. Phycol. Res. 47:101-107.   DOI
59 Eckert, R. & Sibaoka, T. 1968. The flash-triggering act ion potential of the luminescent dinoflagellate Noctiluca. J. Gen. Physiol. 52:258-282.   DOI
60 Glibert, P. M. 2020. Harmful algae at the complex nexus of eutrophication and climate change. Harmful Algae 91:101583.   DOI
61 Matantseva, O., Berdieva, M., Kalinina, V., Pozdnyakov, I., Pechkovskaya, S. & Skarlato, S. 2020. Stressor-induced ecdysis and thecate cyst formation in the armoured dinoflagellates Prorocentrum cordatum. Sci. Rep. 10:18322.   DOI
62 Matantseva, O., Pozdnyakov, I., Voss, M., Liskow, I. & Skarlato, S. 2018. The uncoupled assimilation of carbon and nitrogen from urea and glycine by the bloomforming dinoflagellate Prorocentrum minimum. Protist 169:603-614.   DOI
63 Nawata, T. & Sibaoka, T. 1979. Coupling between action potential and bioluminescence in Noctiluca: effects of inorganic ions and pH in vacuolar sap. J. Comp. Physiol. 134:137-149.   DOI
64 Eckert, R. & Sibaoka, T. 1967. Bioelectric regulation of tentacle movement in a dinoflagellate. J. Exp. Biol. 47:433-446.   DOI