Browse > Article
http://dx.doi.org/10.5483/BMBRep.2013.46.8.075

The uniqueness of the plant mitochondrial potassium channel  

Pastore, Donato (Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Universita di Foggia)
Soccio, Mario (Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Universita di Foggia)
Laus, Maura Nicoletta (Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Universita di Foggia)
Trono, Daniela (Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di Ricerca per la Cerealicoltura)
Publication Information
BMB Reports / v.46, no.8, 2013 , pp. 391-397 More about this Journal
Abstract
The ATP-inhibited Plant Mitochondrial $K^+$ Channel ($PmitoK_{ATP}$) was discovered about fifteen years ago in Durum Wheat Mitochondria (DWM). $PmitoK_{ATP}$ catalyses the electrophoretic $K^+$ uniport through the inner mitochondrial membrane; moreover, the co-operation between $PmitoK_{ATP}$ and $K^+/H^+$ antiporter allows such a great operation of a $K^+$ cycle to collapse mitochondrial membrane potential (${\Delta}{\Psi}$) and ${\Delta}pH$, thus impairing protonmotive force (${\Delta}p$). A possible physiological role of such ${\Delta}{\Psi}$ control is the restriction of harmful reactive oxygen species (ROS) production under environmental/oxidative stress conditions. Interestingly, DWM lacking ${\Delta}p$ were found to be nevertheless fully coupled and able to regularly accomplish ATP synthesis; this unexpected behaviour makes necessary to recast in some way the classical chemiosmotic model. In the whole, $PmitoK_{ATP}$ may oppose to large scale ROS production by lowering ${\Delta}{\Psi}$ under environmental/oxidative stress, but, when stress is moderate, this occurs without impairing ATP synthesis in a crucial moment for cell and mitochondrial bioenergetics.
Keywords
Chemiosmosis; Durum wheat; Mitochondrial potassium channel; Oxidative stress; Protonmotive force;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Scherrer, P., Alexiev, U., Marti, T., Khorana, H. G. and Heyn, M. P. (1994) Covalently bound pH-indicator dyes at selected extracellular or cytoplasmic sites in bacteriorhodopsin. 1. Proton migration along the surface of bacteriorhodopsin micelles and delayed transfer from surface to bulk. Biochemistry 33, 13684-13692.   DOI   ScienceOn
2 de Grey, A. D. (1999) Incorporation of transmembrane hydroxide transport into the chemiosmotic theory. Bioelectrochem. Bioenerg. 49, 43-50.   DOI   ScienceOn
3 Georgievskii, Y., Medvedev, E. S. and Stuchebrukhov, A. A. (2002) Proton transport via the membrane surface. Biophys. J. 82, 2833-2846.   DOI   ScienceOn
4 Serowy, S., Saparov, S. M., Antonenko, Y. N., Kozlovsky, W., Hagen, V. and Pohl, P. (2003) Structural proton diffusion along lipid bilayers. Biophys. J. 84, 1031-1037.   DOI   ScienceOn
5 Tedeschi, H. (2005) Old and new data, new issues: the mitochondrial $\Delta\psi$. Biochim. Biophys. Acta 1709, 195-202.   DOI   ScienceOn
6 Skulachev, V. P. (1994) The latest news of the sodium world. Biochim. Biophys. Acta 1187, 216-221.   DOI   ScienceOn
7 Scandalios, J. G. (1993) Oxygen stress and superoxide dismutases. Plant Physiol. 101, 7-12.
8 Moller, I. M. (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 561-591.   DOI   ScienceOn
9 Alscher, R. G., Donahue, J. L. and Cramer, C. L. (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol. Plantarum 100, 224-233.   DOI   ScienceOn
10 Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N. and Passarella, S. (2001) Alternative oxidase in durum wheat mitochondria. Activation by pyruvate, hydroxypyruvate and glyoxylate and physiological role. Plant Cell Physiol. 42, 1373-1382.   DOI   ScienceOn
11 Alexiev, U., Mollaaghababa, R., Scherrer, P., Khorana, H. G. and Heyn, M. P. (1995) Rapid long-range proton diffusion along the surface of the purple membrane and delayed proton transfer into the bulk. Proc. Natl. Acad. Sci. U.S.A. 92, 372-376.   DOI   ScienceOn
12 Foyer, C. H., Lescure, J. C., Lefebvre, C., Morot-Gaudry, J. F., Vincentz, M. and Vaucheret, H. (1994) Adaptations of photosynthetic electron transport, carbon assimilation, and carbon partitioning in transgenic Nicotiana plumbaginifolia plants to changes in nitrate reductase activity. Plant Physiol. 104, 171-178.   DOI
13 Flagella, Z., Trono, D., Pompa, M., Di Fonzo, N. and Pastore, D. (2006) Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Funct. Plant Biol. 33, 357-366.   DOI   ScienceOn
14 Zhang, H., Huang, H. M., Carson, R. C., Mahmood, J., Thomas, H. M. and Gibson, G. E. (2001) Assessment of membrane potentials of mitochondrial populations in living cells. Anal. Biochem. 298, 170-180.   DOI   ScienceOn
15 Trono, D., Flagella, Z., Laus, M. N., Di Fonzo, N. and Pastore, D. (2004) The uncoupling protein and the potassium channel are activated by hyperosmotic stress in mitochondria from durum wheat seedlings. Plant Cell Environ. 27, 437-448.   DOI   ScienceOn
16 Trono, D., Soccio, M., Laus, M. N. and Pastore, D. (2013) The existence of phospholipase A2 activity in plant mitochondria and its activation by hyperosmotic stress in durum wheat (Triticum durum Desf.). Plant Sci. 199-200, 91-102.   DOI   ScienceOn
17 Soccio, M., Laus, M. N., Trono, D. and Pastore, D. (2013) A new simple fluorimetric method to assay cytosolic ATP content. Application to durum wheat seedlings to assess modulation of mitochondrial potassium channel and uncoupling protein activity under hyperosmotic stress. Biologia. 68, 421-432.   DOI   ScienceOn
18 Dimroth, P., Kaim, G. and Matthey, U. (2000) Crucial role of the membrane potential for ATP synthesis by $F_1F_o$ ATP synthases. J. Exp. Biol. 203, 51-59.
19 Kaim, G. and Dimroth, P. (1999) ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltage. EMBO J. 18, 4118-4127.   DOI   ScienceOn
20 Kadenbach, B. (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim. Biophys. Acta 1604, 77-94.   DOI   ScienceOn
21 Igamberdiev, A. U. and Kleczkowski, L. A. (2003) Membrane potential, adenylate levels and $Mg^{2+}$ are interconnected via adenylate kinase equilibrium in plant cells. Biochim. Biophys. Acta 1607, 111-119.   DOI   ScienceOn
22 Wan, B., Doumen, C., Duszynski, J., Salama, G., Vary, T. C. and LaNoue, K. F. (1993) Effects of cardiac work on electrical potential gradient across mitochondrial membrane in perfused rat hearts. Am. J. Physiol. 265, H453-H460.
23 Koszela-Piotrowska, I., Matkovic, K., Szewczyk, A. and Jarmuszkiewicz, W. (2009) A large-conductance calcium-activated potassium channel in potato (Solanum tuberosum) tuber mitochondria. Biochem. J. 424, 307-316.   DOI   ScienceOn
24 Soccio, M., Laus, M. N., Spera, G. P., Trono, D., Pompa, M., Flagella, Z. and Pastore, D. (2010) Mitochondrial proline oxidation is affected by hyperosmotic stress in durum wheat seedlings. Ann. Appl. Biol. 157, 1-11.   DOI   ScienceOn
25 De Marchi, U., Checchetto, V., Zanetti, M., Teardo, E., Soccio, M., Formentin, E., Giacometti, G. M., Pastore, D., Zoratti, M. and Szabo, I. (2010) ATP-sensitive cation-channel in wheat (Triticum durum Desf.): identification and characterization of a plant mitochondrial channel by patch-clamp. Cell. Physiol. Biochem. 26, 975-982.   DOI   ScienceOn
26 Petrussa, E., Bertolini, A., Krajnakova, J., Casolo, V., Macri, F. and Vianello, A. (2008) Isolation of mitochondria from embryogenic cultures of Picea abies (L.) Karst. and Abies cephalonica Loud.: characterization of a $K^{+}_{ATP}$ channel. Plant Cell Rep. 27, 137-146.
27 Petrussa, E., Casolo, V., Peresson, C., Krajnakova, J., Macri, F. and Vianello, A. (2008) Activity of a $K^{+}_{ATP}$channel in Arum spadix mitochondria during thermogenesis. J. Plant Physiol. 165, 1360-1369.   DOI   ScienceOn
28 Ruy, F., Vercesi, A. E., Andrade, P. B. M., Bianconi, M. L., Chaimovich, H. and Kowaltowski, A. J. (2004) A highly active ATP-insensitive $K^{+}$ import pathway in plant mitochondria. J. Bioenerg. Biomembr. 36, 195-202.   DOI   ScienceOn
29 Jarmuszkiewicz, W., Matkovic, K. and Koszela-Piotrowska, I. (2010) Potassium channels in the mitochondria of unicellular eukaryotes and plants. FEBS Lett. 584, 2057-2062   DOI   ScienceOn
30 Pastore, D., Laus, M. N., Soccio, M. (2010) Plant mitochondrial potassium channel or channels? In Mitochondria: Structure, Function and Dysfunction, Nova Science Publishers,Inc., pp. 883-898, Hauppauge, NY.
31 Pastore, D., Trono, D., Laus, M. N., Di Fonzo, N. and Flagella, Z. (2007) Possible plant mitochondria involvement in cell adaptation to drought stress. A case study: durum wheat mitochondria. J. Exp. Bot. 58, 195-210.
32 Pastore, D., Stoppelli, M. C., Di Fonzo, N. and Passarella, S. (1999) The existence of the $K^{+}$ channel in plant mitochondria. J. Biol. Chem. 274, 26683-26690.   DOI
33 Paucek, P., Mironova, G., Mahdi, F., Beavis, A. D., Woldegiorgis, G. and Garlid, K. D. (1992) Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent $K^{+}$ channel from rat liver and beef heart mitochondria. J. Biol. Chem. 267, 26062-26069.
34 Laus, M. N., Soccio, M., Trono, D., Liberatore, M. T. and Pastore, D. (2011) Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters: a possible defence mechanism in the response to hyperosmotic stress. J. Exp. Bot. 62, 141-154.   DOI   ScienceOn
35 Diolez, P. and Moreau, F. (1985) Correlations between ATP synthesis, membrane potential and oxidation rate in plant mitochondria. Biochim. Biophys. Acta 806, 56-63.   DOI   ScienceOn
36 Kowaltowski, A. J., Seetharama, S., Paucek, P. and Garlid, K. D. (2001) Bioenergetic consequences of opening the ATP-sensitive $K^{+}$ channel of heart mitochondria. Am. J. Physiol. Heart Circ. Physiol. 280, H649-H657.   DOI
37 Czyz, A., Szewczyk, A., Nalecz, M. J. and Wojtczak. L. (1995) The role of mitochondrial potassium fluxes in controlling the protonmotive force in energized mitochondria. Biochem. Biophys. Res. Co. 210, 98-104.   DOI   ScienceOn
38 Devin, A., Guerin, B. and Rigoulet, M. (1997) Response of isolated rat liver mitochondria to variation of external osmolarity in KCl medium: regulation of matrix volume and oxidative phosphorylation. J. Bioenerg. Biomembr. 29, 579-590.   DOI
39 Manon, S. and Guerin, M. (1997) The ATP-induced $K^{+}$-transport pathway of yeast mitochondria may function as an uncoupling pathway. Biochim. Biophys. Acta 1318, 317-321   DOI   ScienceOn
40 Manon, S., Roucou, X., Rigoulet, M. and Guerin, M. (1995) Stimulation of oxidative phosphorylation by electrophoretic $K^{+}$ entry associated to electroneutral $K^{+}$/$H^{+}$ exchange in yeast mitochondria. Biochim. Biophys. Acta 1231, 282-288.   DOI   ScienceOn
41 Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 144-148.   DOI   ScienceOn
42 Mitchell, P. (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. 41, 445-502.   DOI   ScienceOn
43 Nicholls, D. G. and Ferguson, S. J. (1992) The chemiosmotic proton circuit. In Bioenergetics, 2nd ed., pp 82-87, Academic press limited, London.
44 Garlid, K. D. (1996) Cation transport in mitochondria - the potassium cycle. Biochim. Biophys. Acta 1275, 123-126.   DOI   ScienceOn
45 Gout, E., Bligny, R. and Douce, R. (1992) Regulation of intracellular pH values in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. J. Biol. Chem. 267, 13903-13909.
46 Roby, C., Martin, J.-B., Bligny, R. and Douce, R. (1987) Biochemical changes during sucrose deprivation in higher plant cells. Phosphorous-31 nuclear magnetic resonance studies. J. Biol. Chem. 262, 5000-5007.
47 Krulwich, T. A. (1995) Alkaliphiles: 'basic' molecular problems of pH tolerance and bioenergetics. Mol. Microbiol. 15, 403-410.   DOI   ScienceOn
48 Sorgato, M. C., Branca, D. and Ferguson, S. J. (1980) The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force. Biochem. J. 188, 945-948.   DOI
49 Ort, D. R., Dilley, R. A. and Good, N. E. (1976) Photophosphorylation as a function of illumination time. II. Effects of permeant buffers. Biochim. Biophys. Acta 449, 108-124.   DOI   ScienceOn
50 Michel, H. and Oesterhelt, D. (1980) Electrochemical proton gradient across the cell membrane of Halobacterium halobium: Comparison of the light-induced increase with the increase of intracellular adenosine triphosphate under steady-state illumination. Biochemistry 19, 4615-4619.   DOI   ScienceOn
51 Matsuno-Yagi, A. and Hatefi, Y. (1986) Kinetic modalities of ATP synthesis. Regulation by the mitochondrial respiratory chain. J. Biol. Chem. 261, 14031-14038.
52 Hitchens, G. D. and Kell, D. B. (1982) On the extent of localization of the energized membrane state in chromatophores from Rhodopseudomonas capsulata N22. Biochem. J. 206, 351-357.   DOI
53 Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzone, G. F. and Kell, D. B. (1984) A minimal hypothesis for membrane-linked free-energy transduction. The role of independent, small coupling units. Biochim. Biophys. Acta 768, 257-292.   DOI   ScienceOn
54 Westerhoff, H. V., Melandri, B. A., Venturoli, G., Azzone, G. F. and Kell. D. B. (1984) Mosaic protonic coupling hypothesis for free energy transduction. FEBS Lett 165, 1-5.   DOI   ScienceOn
55 Gupte, S. S., Chazotte, B., Leesnitzer, M. A. and Hackenbrock, C. R. (1991) Two-dimensional diffusion of F1F-ATP synthase and ADP/ATP translocator. Testing a hypothesis for ATP synthesis in the mitochondrial inner membrane. Biochim. Biophys. Acta. 1069, 131-138.   DOI   ScienceOn
56 Heberle, J., Riesle, J., Thiedemann, G., Oesterhelt, D. and Dencher, N. A. (1994) Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370, 379-382.   DOI   ScienceOn
57 Castrejon, V., Parra, C., Moreno, R., Pena, A. and Uribe, S. (1997) Potassium collapses the $\Delta{P}$ in yeast mitochondria while the rate of ATP synthesis is inhibited only partially: modulation by phosphate. Arch. Biochem. Biophys. 346, 37-44.   DOI   ScienceOn
58 Trono, D., Soccio, M., Laus, M. N. and Pastore, D. (2011) Potassium channel-oxidative phosphorylation relationship in durum wheat mitochondria from control and hyperosmotic-stressed seedlings. Plant Cell Environ. 34, 2093-2108.   DOI   ScienceOn
59 Matkovic, K., Koszela-Piotrowska, I., Jarmuszkiewicz, W. and Szewczyk, A. (2011) Ion conductance pathways in potato tuber (Solanum tuberosum) inner mitochondrial membrane. Biochim. Biophy. Acta 1807, 275-285.   DOI   ScienceOn
60 Laus, M. N., Soccio, M., Trono, D., Cattivelli, L. and Pastore, D. (2008) Plant Inner Membrane Anion Channel (PIMAC) function in plant mitochondria. Plant Cell Physiol. 49, 1039-1055.   DOI   ScienceOn
61 Garlid, K. D. and Paucek, P. (2003) Mitochondrial potassium transport: the $K^{+}$ cycle. Biochim. Biophys. Acta 1606, 23-41.   DOI   ScienceOn
62 Rottenberg, H. (1983) Uncoupling of oxidative phosphorylation in rat liver mitochondria by general anesthetics. Proc. Natl. Acad. Sci. U.S.A. 80, 3313-3317.   DOI   ScienceOn
63 Qui, Z. H., Yu, L. and Yu, C. A. (1992) Spin-label electron paramagnetic resonance and differential scanning calorimetry studies of the interaction between mitochondrial cytochrome c oxidase and adenosine triphosphate synthase complex. Biochemistry 31, 3297-3302.   DOI   ScienceOn