• 제목/요약/키워드: plant enzymes

검색결과 682건 처리시간 0.025초

Genomic Relationship Among 25 Species of Mammillaria Haw. as Revealed by Isozyme and Protein Polymorphism

  • Mattagajasingh Ilwola;Acharya Laxmikanta;Mukherjee Arup Kumar;Das Premananda
    • Journal of Plant Biotechnology
    • /
    • 제7권2호
    • /
    • pp.105-112
    • /
    • 2005
  • Buffer soluble protein and five isozymes were analyzed to assess the inter specific relationship among 25 species of the genus Mammillaria Haw. A total of 102 types of proteins were resolved, out of which eighty-six types were found to be polymorphic and only two were unique. A total of 248 bands (isoforms) were detected for 5 isozymes, among them only 4 were found to be monomorphic and 35 were exclusive. Mantel 'Z' statistics revealed wide variations in the correlation among different enzymes. The correlation value 'r' was the highest in case of esterase with pooled data of all the five enzymes. The dendrogram constructed on the basis of pooled data (protein and allozyme) divided the species into two major clusters containing 14 and 11 members respectively. The species M. matudae and M. bella were found to be the most closely related while M. decipience and M. camptroticha were distantly apart. The present study gave an indication of usefulness of the isozyme and protein markers for genetic discrimination between different species of Mammillaria.

Enhancing Resistance of Red Pepper to Phytophthora Blight Diseases by Seed Treatment with Plant Growth Promoting Rhizobacteria

  • M. Rajkumar;Lee, Kui-Jae;Park, Min-Kyung;Jo, Rae-Yun;Lee, Wang-Hui
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2003년도 제10차 국제학술회의 및 추계정기 학술발표회
    • /
    • pp.47-47
    • /
    • 2003
  • Plant growth promoting rhizobacteria (PGPR) have been shown to suppress phytopthora blight. This suppression has been related to both microbial antagonism and induced resistance. The PGPR isolates were screened by dual culture plate method and most of the isolates were showed varyinglevels of antagonism. Among the PGPR isolates pyoverdin, pyochelin and salicylic acid producing strains showed the maximum inhibition of mycelial growth of Phytophthora capsici and increased plant growth promotion in red pepper. PGPR isolatesfurther analysed for its ability to induce production of defence related enzymes and chemicals. The activities such as Phenyle alanin ammonia lyase (PAL), Peroxidase (PO), Polyphenol oxidase (PPO) and accumulation of phenolics were observed in PGPR pretreated red pepper plants challenged with Phytophthora capsici. The present study shows that an addition of direct antagonism and plant growth promotion, induction of defense related enzymes involved to enhance resistance against invasion of P. capsici in red pepper.

  • PDF

The Rumen Ecosystem : As a Fountain Source of Nobel Enzymes - Review -

  • Lee, S.S.;Shin, K.J.;Kim, W.Y.;Ha, J.K.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.988-1001
    • /
    • 1999
  • The rumen ecosystem is increasingly being recognized as a promising source of superior polysaccharide-degrading enzymes. They contain a wide array of novel enzymes at the levels of specific activities of 1,184, 1,069, 119, 390, 327 and $946{\mu}mol$ Reducing sugar release/min/mg protein for endoglucanase, xylanase, polygalactouronase, amylase, glucanase and arabinase, respectively. These enzymes are mainly located in the surface of rumen microbes. However, glycoside-degrading enzymes (e.g. glucosidase, fucosidase, xylosidase and arabinofuranosidase, etc.) are mainly located in the rumen fluid, when detected enzyme activities according to the ruminal compartments (e.g. enzymes in whole rumen contents, feed-associated enzymes, microbial cell-associated enzymes, and enzymes in the rumen fluid). Ruminal fungi are the primary contributors to high production of novel enzymes; the bacteria and protozoa also have important functions, but less central roles. The enzyme activities of bacteria, protozoa and fungi were detected 32.26, 19.21 and 47.60 mol glucose release/min/mL mediem for cellulose; 42.56, 14.96 and 64.93 mmol xylose release/min/mL medium after 48h incubation, respectively. The polysachharide-degrading enzyme activity of ruminal anaerobic fungi (e.g. Neocallimastix patriciarum and Piromyces communis, etc.) was much higher approximately 3~6 times than that of aerobic fungi (e.g. Tricoderma reesei, T. viridae and Aspergillus oryzae, etc.) used widely in industrial process. Therefore, the rumen ecosystem could be a growing source of novel enzymes having a tremendous potential for industrial applications.

Inhibitory Effects of the Essential Oils on Acetaminophen-Induced Lipid Peroxidation in the Rat

  • Choi, Jong-Won;Lee, Kyung-Tae;Jung, Won-Tae;Jung, Hyun-Ju;Lee, Seung-Hyung;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • 제8권1호
    • /
    • pp.18-22
    • /
    • 2002
  • Inhibitory effects of the essential oils obtained from ten herbs were tested on acetaminophen-induced lipid peroxidation in the rat. The oil of Artemisia princeps var. orientalis buds (AP-oil) showed the most significant hepatic malondialdehyde value which was comparable to those of ascorbic acid and methionine. This was warranted by the protective effect on hepatic glutathione depletion. Overview of the data on the activities of hepatic microsomal enzymes, aminopyrine N-demethylase and aniline hydroxylase led to the notice that the suppressed activities of those enzymes are mainly responsible for the anti-lipid peroxidation. The interpretation of GC-MS data on the AP-oil revealed the ingredient of cineol, thujone, carvone, borneol, camphor and terpineol.

Differentiation and Detection of Phytoplasma using PCR from Diseased Plant in Korea

  • Lee, Kui-Jae
    • Plant Resources
    • /
    • 제3권3호
    • /
    • pp.173-178
    • /
    • 2000
  • This test checked jujube witches'-broom disease, sumac witches'-broom disease, paulonia witches'- broom disease, and mulberry dwarf disease whether or not they were infected by phytoplasma, using universal and specific primers. Upon treatment of DNA amplified by PCR of phytoplasma with Alu I , Hpa II and Sat I restricted enzymes, distinction of phytoplasmas was possible. Particularly, phytoplasma of each host was distinguishable by treatment of Hpa II restricted enzyme. Meanwhile, analysis of restricted enzymes of jujube witches'-broom disease showed a higher infectivity of phytoplasmas of two origins. There were a lot of relations between jujube witches'-broom disease and sumac witches'-broom disease, and between paulonia witches'-broom disease and mulberry dwarf disease.

  • PDF

Synthesis of unnatural compounds by enzyme engineering

  • Morita, Hiroyuki
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2019년도 춘계학술대회
    • /
    • pp.34-34
    • /
    • 2019
  • About 60% of the present drugs were developed from natural products with unique chemical diversity and biological activities. Hence, discovery of new bioactive compounds from natural products is still important for the drug development. On the other hand, breakthrough made in synthetic biology has also begun to supply us with many useful compounds through manipulation of biosynthetic gene for secondary metabolites. Theoretically, this approach can also be exploited to generate new unnatural compounds by intermixing genes from different biosynthetic pathway. Considering the potential, we are studying about bioactive compounds in natural sources, as well as the biosynthesis of natural products including engineering of the secondary metabolite enzymes to make new compounds in order to construct the methodological basis of the synthetic biology. In this symposium, engineering of secondary metabolite enzymes that are involved in the biosynthesis of plant polyketides to generate new compounds in our laboratory will be mainly introduced.

  • PDF

식물 특정효소저해제의 생물활성 조사에 의한 신규제초제 작용점 탐색 (Searching of Possible Target Enzymes for Herbicide Development using Commercial Plant-Specific Inhibitors)

  • 황인택;최정섭;박상희;이관휘;이병회;홍경식;조광연
    • 농약과학회지
    • /
    • 제5권1호
    • /
    • pp.36-45
    • /
    • 2001
  • 본 연구는 새로운 제초제 후보물질을 탐색하기 위하여 식물특이적 효소 저해제로 알려진 107개 기존 화합물에 대하여 생물활성을 조사하였다. Germination test, seedling assay, wheat leaf disc assay, cyanobacteria assay, whole plant assay를 통하여 15종의 저해제를 선발하였고 이들은 34종 효소를 저해하는 것으로 확인되었다. 이들 화합물 중에서 phenylhydrazine, purine, o-phenanthroline, oleylamine, 7,8-benzoquinoline, aminooxyacetic acid, dicyclohexylcarbodiimide 등은 성체를 이용한 온실 실험에서 높은 제초활성을 나타내었다. 7,8-benzoquinone, 8-hydroxyquinoline, 2,2'-dipyridyl 및 o-phenanthroline 등은 피, 벼, 토마토의 발아를 $1.25{\sim}5{\mu}M$의 농도에서도 억제하였다. 7,8-benzoquinoline, cyanuric fluoride, 4-methylpyrazole, tranylcypromine, oleylamine과 trifluoperazine 등은 $30{\sim}100{\mu}M$ 농도에서 cyanobacteria의 생육을 저해하였다. Dicyclohexyl carbodiimide와 chlorpromazine은 $100{\mu}M$ 농도에서 wheat leaf disc의 백화현상을 유기시켰다. 이상과 같이 생물학적 활성을 갖는 식물 특이적 효소저해제들은 신규제초제 후보물질을 선발하기 위한 새로운 대상효소로 이용될 수 있을 것으로 생각된다.

  • PDF

The Function of ArgE Gene in Transgenic Rice Plants

  • Guo, Jia;Seong, Eun-Soo;Cho, Joon-Hyeong;Wang, Myeong-Hyeon
    • 한국자원식물학회지
    • /
    • 제20권6호
    • /
    • pp.524-529
    • /
    • 2007
  • We carried out to study the function of ArgE in transgenic rice plants, which were confirmed by PCR analysis and hygromycin selection. Transgenic rice plants were with selectable marker gene(HPT) inserted in genome of the rice. Southern analysis with hpt probe confirmed by two restriction enzymes that copy numbers of the selectable gene was introduced into the plant genome. We displayed that the relationship between drought stress and ArgE gene with the overexpressing rice plants. From this result, we observed that the degree of leaves damage has no difference in control and transgenic lines. The total RNAs were extracted from 6 weeks-seedling in normal condition in order to examine their expression levels with ArgE-overexpressed transgenic rice. In particular, expression patterns of genes encoding enzymes involved in abiotic stress, including drought and salt stresses. OsGF14a and OsSalt were investigated by reverse transcription-PCR(RT-PCR). Expression levels of the OsSalt gene decreased significantly in transgenic rice plants compared to control plant. However, ion leakage measurement did not demonstrate any leaves damage change between control and ArgE transgenic plants exposure to mannitol treatment. These results suggest that expression of the ArgE is not involved in tolerance for drought stress in rice but may playa role of signaling networks for salt-induced genes.

Development of PCR-RFLP Technique for Identify Several Members of Fusarium incarnatum-equiseti Species Complex and Fusarium fujikuroi Species Complex

  • Pramunadipta, Syafiqa;Widiastuti, Ani;Wibowo, Arif;Suga, Haruhisa;Priyatmojo, Achmadi
    • The Plant Pathology Journal
    • /
    • 제38권3호
    • /
    • pp.254-260
    • /
    • 2022
  • Fusarium incarnatum-equiseti species complex (FIESC) contain over 40 members. The primer pair Smibo1FM/Semi1RM on the RPB2 partial gene has been reported to be able to identify Fusarium semitectum. The F. fujikuroi species complex (FFSC) contains more than 50 members. The F. verticillioides as a member of this complex can be identified by using VER1/VER2 primer pair on the CaM partial gene. In this research, the Smibo1FM/Semi1RM can amplify F. sulawesiense, F. hainanense, F. bubalinum, and F. tanahbumbuense, members of FIESC at 424 bp. The VER1/VER2 can amplify F. verticillioides, F. andiyazi, and F. pseudocircinatum, members of FFSC at 578 bp. Polymerase chain reaction-restriction fragment length polymorphism by using the combination of three restriction enzymes EcoRV, MspI, and HpyAV can differentiate each species of FIESC used. The two restriction enzymes HpaII and NspI can distinguish each species of FFSC used. The proper identification process is required for pathogen control in the field in order to reduce crop yield loss.

Rhizobia에서 Malonyl-CoA synthetase와 Malonamidase의 확인 (Identification of Malonate-specific Enzymes, Malonyl-CoA Synthetase and Malonamidase, in Rhizobia)

  • 김유삼;채호준;이은;김용성
    • 미생물학회지
    • /
    • 제29권1호
    • /
    • pp.40-48
    • /
    • 1991
  • Two malonate-specific enzymes, malonyl-CoA synthetase and malonamidase, were found in free-living cultures of Rhizobium japonicum, Rhizobium meliloti, and Rhizobium trifolii, that infect plant roots where contain a high concentration of malonate. Malonyl-CoA synthetase catalyzes the formation of malonyl-CoA, AMP, and PPi directly from malonate, coenzyme A, and ATP in the presence of $Mg^{2+}$ Malonamidase is a novel enzyme that catalyzes hydrolysis and malonyl transfer of malonamate, and forms malonohydroxamate from malonate and hydroxylamine. Both enzymes are highly specific for malonate. These results show that Rhizobia have enzymes able to metabolize malonate and suggest that malonate may be used in symbiotic carbon and nitrogen metabolism.

  • PDF