• Title/Summary/Keyword: plant bacterial pathogen

Search Result 287, Processing Time 0.021 seconds

Possible Association of Indole-3-Acetic Acid Production by Xanthomonas axonopodis pv. glycines with Development of Pustule Disease in Soybean

  • Kim, Hong-Suk;Park, Hyoung-Joon;Heu, Sunggi;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.44 no.4
    • /
    • pp.173-176
    • /
    • 2001
  • This report concerns the role of indole-3-acetic acid (IAA) in bacterial pustule disease of soybean. Pustule production in soybean leaves caused by Xanthomonas axonopodis pv. glycines was accompanied by a drastic increase in IAA content of host tissues. The phytopathogenic bacterium synthesized IAA in a tryptophan concentration-dependent manner when grown in a defined minimal medium. In complex media, however, the pathogen showed no response to tryptophan feeding, implying that the bacterial biosynthetic machinery of IAA is strictly regulated by nutrient availability of its growth environments. The results may suggest that IAA of bacterial origin and tryptophan of plant origin be involved in the process of pustule symptom development in soybean.

  • PDF

A Data Base for Identification of Pseudomonas syringae pv. actinidiae, the Pathogen of Kiwifruit Bacterial Canker, Using Biolog Program (Biolog Program을 이용한 참다래 궤양병균 동정용 Data Base)

  • 고영진
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.125-128
    • /
    • 1997
  • Reactions of Pseudomonas syringae pv. actinidiae to 95 carbon sources in a 96-well microplate (BiOLOG GN MicroPlateTM) were investigated. The bacterium used 9 carbon sources such as D-mannitol, sucrose, etc., but did not use 62 carbon sources such as $\alpha$-cyclodextrin, dextrin, etc. Based on the reactions, a user data base for identification of P. syringae pv. actinidiae was constructed in Biolog program (BiOLOG MicroLogTM 2 system). P. syringae pv. actinidiae isolates collected from kiwifruits could be identified automatically with high similarity using the user data base, which could diagnose rapidly and easily whether the tree was infected with bacterial canker or not.

  • PDF

Suppressive Effect of Water Extract from Spent Mushroom Substrate of Pleurotus eryngii against Tomato Bacterial Wilt Disease (큰느타리 수확 후 배지 물 추출물의 토마토 풋마름병 억제)

  • Kwak, A-Min;Lee, Sang-Yeop;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.323-329
    • /
    • 2016
  • Water extract from spent mushroom substrate (WESMS) of Pleurotus eryngii suppressed bacterial wilt disease of tomato caused by Ralstonia solanacearum by 70% without any direct antibacterial activity against the pathogen. WESMS-treated tomato had increased contents of free phenolic compounds (increased by 3%) and total salicylic acid (increased by 75%), and significantly enhanced plant height, leaf number, and fresh weight compared to those of a water-treated tomato sample. These results suggest that the treatment of tomato with WESMS can suppress bacterial wilt disease by enhancing plant defense factors and overall plant health.

RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a

  • Myoungsub, Kim;Dohui, Lee;Hyun Suk, Cho;Young-Soo, Chung;Hee Jin, Park;Ho Won, Jung
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.603-615
    • /
    • 2022
  • Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.

Biological Control of Blue Mold by Microorganism (잿빛 곰팡이병의 미생물학적 제어)

  • 조정일;조자용;안병렬
    • Korean Journal of Organic Agriculture
    • /
    • v.8 no.3
    • /
    • pp.121-130
    • /
    • 2000
  • In order to screen the antagonistic bacteria which inhibit the growth of the plant pathogen, Penicillum expansum, we isolated an effective bacterial strain and investigated into the antifungal activity of the antagonist and it's identification. The eleven strains of bacteria which strongly inhibited P. expansum were isolated from the nature, and the best antagonistic bacterial strain designated as KB22, was selected. The antagonistic strain KB22 was identified to be the genus Bacillus subtilis based on morphological and biochemical characterization, The KB22 showed 55.9% of antifungal activity against the growth of P. erpansum. By the treatment of the culture broth and the heat treated culture filtrate of it, the B. subtilis KB22 showed 90% and 15% of antifungal activity, respectively.

  • PDF

Studies on the Physiological Characteristics of Bacterial Wilt Pathogen, Pseudomonas solanacearum E.F. Smith (풋마름병균의 생리적 성상에 관한 시험)

  • Choi Yong Chul;Cho Eui Kyoo
    • Korean journal of applied entomology
    • /
    • v.11 no.1
    • /
    • pp.5-9
    • /
    • 1972
  • The experiment was conducted to investigate the physiological characteristics on 16 Isolates of bacterial wilt pathogen, pseudomonas solanacearum E.F. Smith, those obtained from infected stems of tomatoes, hot-Peppers and eggplants. PSA and Sucrose medium favoured by the most of the isolates, and various degree of gelatin liquefaction occurred by each of nine isolates those alble to liquefy gelatin among 16 isolates tested. The most of the isolates except one, did not reduce methylen blue. All isolates did not utilize lactose, saccharose, and starch, although all isolates utilize the galactose. The utilization of dextrin, esculin, glucose, mannitol, raffinose and salicin was depended on each isolate.

  • PDF

Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

  • Wai, Khin Pa Pa;Siddique, Muhammad Irfan;Mo, Hwang-Sung;Yoo, Hee Ju;Byeon, Si-Eun;Jegal, Yoonhyuk;Mekuriaw, Alebel A.;Kim, Byung-Soo
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.428-432
    • /
    • 2015
  • Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying $Bs_1$, $Bs_2$ and $Bs_3$, and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047.

Incidence Rates of Major Diseases on Green-Fleshed Kiwifruit cv. Hayward and Yellow-Fleshed Kiwifruit cv. Haegeum (그린키위 품종 헤이워드와 골드키위 품종 해금의 주요 병 발병률)

  • Kim, Gyoung Hee;Koh, Young Jin
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • Incidence rates of bacterial canker, bacterial leaf spot and postharvest fruit rot on the Korean yellow-fleshed kiwifruit cv. Haegeum were compared with those on the most popular green-fleshed kiwifruit cv. Hayward grown in several naturally infected kiwifruit orchards in 2013 and 2014. The percentages of diseased leaves caused by bacterial canker were 18.5% and 17.3% on Hayward in 2013 and 2014, but those on Haegeum were 1.2% and 0%, respectively. The percentages of diseased leaves caused by bacterial leaf spot on Hayward were 63.5% and 16.2% in 2013 and 2014, respectively, but no bacterial leaf spots were observed on Haegeum in both years. The average percentages of diseased fruits caused by postharvest fruit rot were 24.2% and 20.5% on Hayward in 2013 and 2014, while 6.3% and 4.4% and Haegeum, respectively. Botryosphaeria dothidea was turned out to be the major pathogen of postharvest fruit rot on both cultivars.

Biogenic Volatile Compounds for Plant Disease Diagnosis and Health Improvement

  • Sharifi, Rouhallah;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.459-469
    • /
    • 2018
  • Plants and microorganisms (microbes) use information from chemicals such as volatile compounds to understand their environments. Proficiency in sensing and responding to these infochemicals increases an organism's ecological competence and ability to survive in competitive environments, particularly with regard to plant-pathogen interactions. Plants and microbes acquired the ability to sense and respond to biogenic volatiles during their evolutionary history. However, these signals can only be interpreted by humans through the use of state-of the-art technologies. Newly-developed tools allow microbe-induced plant volatiles to be detected in a rapid, precise, and non-invasive manner to diagnose plant diseases. Beside disease diagnosis, volatile compounds may also be valuable in improving crop productivity in sustainable agriculture. Bacterial volatile compounds (BVCs) have potential for use as a novel plant growth stimulant or as improver of fertilizer efficiency. BVCs can also elicit plant innate immunity against insect pests and microbial pathogens. Research is needed to expand our knowledge of BVCs and to produce BVC-based formulations that can be used practically in the field. Formulation possibilities include encapsulation and sol-gel matrices, which can be used in attract and kill formulations, chemigation, and seed priming. Exploitation of biogenic volatiles will facilitate the development of smart integrated plant management systems for disease control and productivity improvement.

Bacterial Community Structure and the Dominant Species in Imported Pollens for Artificial Pollination

  • Kim, Su-Hyeon;Do, Heeil;Cho, Gyeongjun;Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.299-306
    • /
    • 2021
  • Pollination is an essential process for plants to carry on their generation. Pollination is carried out in various ways depending on the type of plant species. Among them, pollination by insect pollinator accounts for the most common. However, these pollinators have be decreasing in population density due to environmental factors. Therefore, use of artificial pollination is increasing. However, there is a lack of information on microorganisms present in the artificial pollens. We showed the composition of bacteria structure present in the artificial pollens of apple, kiwifruit, peach and pear, and contamination of high-risk pathogens was investigated. Acidovorax spp., Pantoea spp., Erwinia spp., Pseudomonas spp., and Xanthomonas spp., which are classified as potential high-risk pathogens, have been identified in imported pollens. This study presented the pollen-associated bacterial community structure, and the results are expected to be foundation for strengthening biosecurity in orchard industry.