Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.08.2022.0118

RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a  

Myoungsub, Kim (Department of Applied Bioscience, Dong-A University)
Dohui, Lee (Department of Applied Bioscience, Dong-A University)
Hyun Suk, Cho (Department of Applied Bioscience, Dong-A University)
Young-Soo, Chung (Department of Applied Bioscience, Dong-A University)
Hee Jin, Park (Department of Molecular Genetics, Dong-A University)
Ho Won, Jung (Institute of Agricultural Life Science, Dong-A University)
Publication Information
The Plant Pathology Journal / v.38, no.6, 2022 , pp. 603-615 More about this Journal
Abstract
Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.
Keywords
bacterial brown spot; compatible interaction; mRNA-seq; Pseudomonas syringae pv. syringae B728a; soybean;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Moreno, A. A., Mukhtar, M. S., Blanco, F., Boatwright, J. L., Moreno, I., Jordan, M. R., Chen, Y., Brandizzi, F., Dong, X., Orellana, A., Pajerowska-Mukhtar, K. M. and Polymenis, M. 2012. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS ONE 7:e31944.
2 Park, C.-J. and Park, J. M. 2019. Endoplasmic reticulum plays a critical role in integrating signals generated by both biotic and abiotic stress in plants. Front. Plant Sci. 10:399.
3 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. and Salzberg, S. L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11:1650-1667.   DOI
4 Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T. and Salzberg, S. L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33:290-295.   DOI
5 Pottinger, S. E., Bak, A., Margets, A., Helm, M., Tang, L., Casteel, C. and Innes, R. W. 2020. Optimizing the PBS1 decoy system to confer resistance to Potyvirus infection in Arabidopsis and soybean. Mol. Plant Microbe-Interact. 33:932-944.   DOI
6 Ruberti, C., Kim, S.-J., Stefano, G. and Brandizzi, F. 2015. Unfolded protein response in plants: one master, many questions. Curr. Opin. Plant Biol. 27:59-66.   DOI
7 Russell, A. R., Ashfield, T. and Innes, R. W. 2015. Pseudomonas syringae Effector AvrPphB suppresses AvrB-induced activation of RPM1 but not AvrRpm1-induced activation. Mol. Plant Microbe-Interact. 28:727-735.   DOI
8 Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Haweker, H., Dong, X., Robatzek, S. and Schulze-Lefert, P. 2009. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J. 28:3439-3449.   DOI
9 Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. and Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430-439.   DOI
10 Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C. and Jackson, S. A. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178-183.   DOI
11 Sonah, H., Zhang, X., Deshmukh, R. K., Borhan, M. H., Fernando, W. G. D. and Belanger, R. R. 2016. Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola. Front. Plant Sci. 7:1784.
12 Soybean Breeding Team, Upland Crop Div., Crop Experiment and Experiment Station. 1994. A new high seed-protein, small grain and high-yielding soybean variety "Kwangankong. Korean J. Breed. Sci. 16:462.
13 Thomas, P. D., Kejariwal, A., Campbell, M. J., Mi, H., Diemer, K., Guo, N., Ladunga, I., Ulitsky-Lazareva, B., Muruganujan, A., Rabkin, S., Vandergriff, J. A. and Doremieux, O. 2003. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31:334-341.   DOI
14 Thulasi Devendrakumar, K., Li, X. and Zhang, Y. 2018. MAP kinase signalling: interplays between plant PAMP- and effectortriggered immunity. Cell. Mol. Life Sci. 75:2981-2989.   DOI
15 Trapnell, C., Pachter, L. and Salzberg, S. L. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111.   DOI
16 Wang, Z. and Tian, Z. 2015. Genomics progress will facilitate molecular breeding in soybean. Sci. China Life Sci. 58:813-815.   DOI
17 van Esse, H. P., Fradin, E. F., de Groot, P. J., de Wit, P. J. G. M. and Thomma, B. P. H. J. 2009. Tomato transcriptional responses to a foliar and a vascular fungal pathogen are distinct. Mol. Plant Microbe-Interact. 22:245-258.   DOI
18 Vinatzer, B. A., Teitzel, G. M., Lee, M.-W., Jelenska, J., Hotton, S., Fairfax, K., Jenrette, J. and Greenberg, J. T. 2006. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol. Microbiol. 62:26-44.   DOI
19 Wang, X., Liu, W., Chen, X., Tang, C., Dong, Y., Ma, J., Huang, X., Wei, G., Han, Q., Huang, L. and Kang, Z. 2010. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol. 10:9.
20 Wei, Y., Balaceanu, A., Rufian, J. S., Segonzac, C., Zhao, A., Morcillo, R. J. L. and Macho, A. P. 2020. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nat. Commun. 11:3763.
21 Xu, Z., Song, N., Ma, L. and Wu, J. 2019. IRE1-bZIP60 pathway is required for Nicotiana attenuata resistance to fungal pathogen Alternaria alternata. Front. Plant Sci. 10:263.
22 Yeom, W. W., Kim, H. J., Lee, K.-R., Cho, H. S., Kim, J.-Y., Jung, H. W., Oh, S.-W., Jun, S. E., Kim, H. U. and Chung, Y.-S. 2020. Increased production of α-Linolenic acid in soybean seeds by overexpression of Lesquerella FAD3-1. Front. Plant Sci. 10:1812.
23 Yuan, Y., Yang, Y., Yin, J., Shen, Y., Li, B., Wang, L. and Zhi, H. 2020. Transcriptome-based discovery of genes and networks related to RSC3Q-mediated resistance to Soybean mosaic virus in soybean. Crop Pasture Sci. 71:987.
24 Chakraborty, R., Macoy, D. M., Lee, S. Y., Kim, W.-Y. and Kim, M. G. 2017. Tunicamycin-induced endoplasmic reticulum stress suppresses plant immunity. Appl. Biol. Chem. 60:623-630.   DOI
25 Bao, Y. and Howell, S. H. 2017. The unfolded protein response supports plant development and defense as well as responses to abiotic stress. Front. Plant Sci. 8:344.
26 Bolger, A. M., Lohse, M. and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.   DOI
27 Carter, T. E., Nelson, R. L., Sneller, C. H. and Cui, Z. 2004. Genetic diversity in soybean. In: Soybeans: improvement, production, and uses, 3rd ed. eds. by R. M. Shibles, J. E. Harper, R. F. Wilson and R. C. Shoemaker, pp. 303-416. American Society of Agronomy, Madison, WI, USA.
28 Chen, Y., Lun, A. T. L. and Smyth, G. K. 2016. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 5:1438.
29 Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814.   DOI
30 Cooper, B., Campbell, K. B., McMahon, M. B. and Luster, D. G. 2013. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing. Plant Signal. Behav. 8:e27543.
31 Cregeen, S., Radisek, S., Mandelc, S., Turk, B., Stajner, N., Jakse, J. and Javornik, B. 2015. Different gene expressions of resistant and susceptible Hop cultivars in response to infection with a highly aggressive strain of Verticillium albo-atrum. Plant Mol. Biol. Rep. 33:689-704.   DOI
32 Dangl, J. L. and Jones, J. D. G. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833.   DOI
33 Ercolani, G. L., Hagedorn, D. J., Kelman, A. and Rand, R. E. 1974. Epiphytic survival of Pseudomonas syringae on hairy vetch in relation to epidemiology of bacterial brown spot of bean in Wisconsin. Phytopathology 64:1330-1339.   DOI
34 Delgado-Cerrone, L., Alvarez, A., Mena, E., Ponce de Leon, I. and Montesano, M. 2018. Genome-wide analysis of the soybean CRK-family and transcriptional regulation by biotic stress signals triggering plant immunity. PLoS ONE 13:e0207438.
35 Delplace, F., Huard-Chauveau, C., Berthom, R. and Roby, D. 2022. Network organization of the plant immune system: from pathogen perception to robust defense induction. Plant J. 109:447-470.   DOI
36 Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539-548.   DOI
37 Faske, T., Kirkpatrick, T., Zhou, J. and Tzanetakis, I. 2014. Soybean diseases. In: Arkansas soybean production handbook - MP197, pp. 1-18. The Soybean Commodity Committee of the Cooperative Extension Service, University of Arkansas, Fayetteville, AR, USA.
38 Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., Lykidis, A., Trong, S., Nolan, M., Goltsman, E., Thiel, J., Malfatti, S., Loper, J. E., Lapidus, A., Detter, J. C., Land, M., Richardson, P. M., Kyrpides, N. C., Ivanova, N. and Lindow, S. E. 2005. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. U. S. A. 102:11064-11069.   DOI
39 Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227.   DOI
40 Gnanamanickam, S. S. and Ward, E. W. B. 1982. Characterization of Pseudomonas syringae strains causing disease symptoms on soybean. Can. J. Plant Pathol. 4:233-236.   DOI
41 Huang, H., Ullah, F., Zhou, D.-X., Yi, M. and Zhao, Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10:800.
42 Gyetvai, G., Sonderkaer, M., Gobel, U., Basekow, R., Ballvora, A., Imhoff, M., Kersten, B., Nielsen, K. L. and Gebhardt, C. 2012. The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by DeepSAGE analysis. PLoS ONE 7:e31526.
43 Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A. and Steffey, K. L. 2015. Compendium of soybean diseases and pests. 5th ed. American Phytopathological Society, St. Paul, MN, USA. 201 pp.
44 Helm, M., Qi, M., Sarkar, S., Yu, H., Whitham, S. A. and Innes, R. W. 2019. Engineering a decoy substrate in soybean to enable recognition of the soybean mosaic virus NIa protease. Mol. Plant-Microbe Interact. 32:760-769.   DOI
45 Hirano, S. S., Baker, L. S. and Upper, C. D. 1996. Raindrop momentum triggers growth of leaf-associated populations of Pseudomonas syringae on field-grown snap bean plants. Appl. Environ. Microbiol. 62:2560-2566.   DOI
46 Hirano, S. S., Clayton, M. K. and Upper, C. D. 1994. Estimation of and temporal changes in means and variances of populations of Pseudomonas syringae on snap bean leaflets. Phytopathology 84:934-940.   DOI
47 Hirano, S. S. and Upper, C. D. 1990. Population biology and epidemiology of Pseudomonas syringae. Annu. Rev. Phytopathol. 28:155-177.   DOI
48 Hirano, S. S. and Upper, C. D. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64:624-653.   DOI
49 Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M. and Ludwikow, A. 2018. Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 9:1387.
50 Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329.   DOI
51 Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T. and Yamanishi, Y. 2007. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36:D480-D484.   DOI
52 Kanehisa, M., Sato, Y. and Kawashima, M. 2022. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 31:47-53.   DOI
53 Kennelly, M. M., Cazorla, F. M., de Vicente, A., Ramos, C. and Sundin, G. W. 2007. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis. 91:4-17.   DOI
54 Kim, D., Paggi, J. M., Park, C., Bennett, C. and Salzberg, S. L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37:907-915.   DOI
55 Lee, C., Choi, M.-S., Kim, H.-T., Yun, H.-T., Lee, B., Chung, Y.-S., Kim, R. W. and Choi, H.-K. 2015. Soybean [Glycine max (L.) Merrill]: importance as a crop and pedigree reconstruction of Korean varieties. Plant Breed. Biotechnol. 3:179-196.   DOI
56 Kim, M.-J., Kim, J. K., Kim, H. J., Pak, J. H., Lee, J.-H., Kim, D.-H., Choi, H. K., Jung, H. W., Lee, J.-D., Chung, Y.-S. and Ha, S.-H. 2012. Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One 7:e48287.
57 Kim, Y.-J., Lee, K.-W., Cho, S.-K., Oh, Y.-J., Shin, S.-O., Paik, C.-H., Kim, K.-H., Kim, T.-S. and Kim, K.-J. 2011. Selection and quality evaluation of sprout soybean [Glycine max (L.) Merrill] variety for environment-friendly cultivation in southern paddy field. Korean J. Org. Agric. 19:357-372 (in Korean).
58 Langmead, B. and Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9:357-359.   DOI
59 Lee, J., Teitzel, G. M., Munkvold, K., del Pozo, O., Martin, G. B., Michelmore, R. W. and Greenberg, J. T. 2012. Type III secretion and effectors shape the survival and growth pattern of Pseudomonas syringae on leaf surfaces. Plant Physiol. 158:1803-1818.   DOI
60 Li, M.-W., Wang, Z., Jiang, B., Kaga, A., Wong, F.-L., Zhang, G., Han, T., Chung, G., Nguyen, H. and Lam, H.-M. 2020. Impacts of genomic research on soybean improvement in East Asia. Theor. Appl. Genet. 133:1655-1678.   DOI
61 Lindemann, J., Arny, D. C. and Upper, C. D. 1984. Use of an apparent infection threshold population of Pseudomonas syringae to predict incidence and severity of brown spot of bean. Phytopathology 74:1334-1339.   DOI
62 Loper, J. E. and Lindow, S. E. 1987. Lack of evidence for the in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. Phytopathology 77:1449-1454.   DOI
63 Liu, H.-J., Tang, Z.-X., Han, X.-M., Yang, Z.-L., Zhang, F.-M., Yang, H.-L., Liu, Y.-J. and Zeng, Q.-Y. 2015a. Divergence in enzymatic activities in the soybean GST supergene family provides new insight into the evolutionary dynamics of whole-genome duplicates. Mol. Biol. Evol. 32:2844-2859.   DOI
64 Liu, J.-Z., Graham, M. A., Pedley, K. F. and Whitham, S. A. 2015b. Gaining insight into soybean defense responses using functional genomics approaches. Brief. Funct. Genomics 14:283-290.   DOI
65 Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., Huang, X., Li, Y., Zhang, M., Wang, Z., Zhu, B., Han, B., Liang, C. and Tian, Z. 2020. Pangenome of wild and cultivated soybeans. Cell 182:162-176. e13.
66 Martin, J. A. and Wang, Z. 2011. Next-generation transcriptome assembly. Nat. Rev. Genet. 12:671-682.   DOI
67 Meng, H., Sun, M., Jiang, Z., Liu, Y., Sun, Y., Liu, D., Jiang, C., Ren, M., Yuan, G., Yu, W., Feng, Q., Yang, A., Cheng, L. and Wang, Y. 2021. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae. Sci Rep. 11:809.
68 Meng, X. and Zhang, S. 2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245-266.   DOI
69 Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X. and Thomas, P. D. 2019. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 14:703-721.   DOI