Browse > Article
http://dx.doi.org/10.5423/PPJ.NT.02.2021.0029

Bacterial Community Structure and the Dominant Species in Imported Pollens for Artificial Pollination  

Kim, Su-Hyeon (Division of Applied Life Science, Gyeongsang National University)
Do, Heeil (Division of Applied Life Science, Gyeongsang National University)
Cho, Gyeongjun (Division of Applied Life Science, Gyeongsang National University)
Kim, Da-Ran (Research Institute of Life Science, Gyeongsang National University)
Kwak, Youn-Sig (Division of Applied Life Science, Gyeongsang National University)
Publication Information
The Plant Pathology Journal / v.37, no.3, 2021 , pp. 299-306 More about this Journal
Abstract
Pollination is an essential process for plants to carry on their generation. Pollination is carried out in various ways depending on the type of plant species. Among them, pollination by insect pollinator accounts for the most common. However, these pollinators have be decreasing in population density due to environmental factors. Therefore, use of artificial pollination is increasing. However, there is a lack of information on microorganisms present in the artificial pollens. We showed the composition of bacteria structure present in the artificial pollens of apple, kiwifruit, peach and pear, and contamination of high-risk pathogens was investigated. Acidovorax spp., Pantoea spp., Erwinia spp., Pseudomonas spp., and Xanthomonas spp., which are classified as potential high-risk pathogens, have been identified in imported pollens. This study presented the pollen-associated bacterial community structure, and the results are expected to be foundation for strengthening biosecurity in orchard industry.
Keywords
artificial pollination; biosecurity; high-risk pathogen; pollen-associated microbiota;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttila, A. M., Compant, S., Campisano, A., Doring, M. and Sessitsh, A. 2015. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79:293-320.   DOI
2 Samnegard, U., Hamback, P. A. and Smith, H. G. 2019. Pollination treatment affects fruit set and modifies marketable and storable fruit quality of commercial apples. R. Soc. Open Sci. 6:190326.   DOI
3 von Wintzingerode, F., Landt, O., Ehrlich, A. and Gobel, U. B. 2000. Peptide nucleic acid-mediated PCR clamping as a useful supplement in the determination of microbial diversity. Appl. Environ. Microbiol. 66:549-557.   DOI
4 Wei, Z., Hu, J., Gu, Y., Yin, S., Xu, Y., Jousset, A., Shen, Q. and Friman, V.-P. 2018. Ralstonia solanacearum pathogen disrupts bacterial rhizosphere microbiome during an invasion. Soil Biol. Biochem. 118:8-17.   DOI
5 Zhao, D.-F. and Kuwana, T. 2003. Purification of avian circulating primordial germ cells by Nycodenz density gradient centrifugation. Br. Poult. Sci. 44:30-35.   DOI
6 Gallai, N., Salles, J.-M., Settele, J. and Vaissiere, B. E. 2009. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68:810-821.   DOI
7 Cellini, A., Giacomuzzi, V., Donati, I., Farneti, B., RodriguezEstrada, M. T., Savioli, S., Angeli, S. and Spinelli, F. 2019. Pathogen-induced changes in floral scent may increase honeybee-mediated dispersal of Erwinia amylovora. ISME J. 13:847-859.   DOI
8 Cernava, T., Erlacher, A., Soh, J., Sensen, C. W., Grube, M. and Berg, G. 2019. Enterobacteriaceae dominate the core microbiome and contribute to the resistome of arugula (Eruca sativa Mill.). Microbiome 7:13.   DOI
9 Donati, I., Cellini, A., Buriani, G., Mauri, S., Kay, G., Tacconi, G. and Spinelli, F. 2018. Pathways of flower infection and pollen-mediated dispersion of Pseudomonas syringae pv. actinidiae, the causal agent of kiwifruit bacterial canker. Hortic. Res. 5:56.   DOI
10 Frank, A. C., Guzman, J. P. S. and Shay, J. E. 2017. Transmission of bacterial endophytes. Microorganisms 5:70.   DOI
11 Hirsch, P. R. and Mauchline, T. H. 2012. Who's who in the plant root microbiome? Nat. Biotechnol. 30:961-962.   DOI
12 Lautenbach, S., Seppelt, R., Liebscher, J. and Dormann, C. F. 2012. Spatial and temporal trends of global pollination benefit. PLoS ONE 7:e35954.   DOI
13 Liao, F., Zhang, Y., Zhu, L.-H., Cao, B., Lv, D., Luo, J.-F. and Li, G.-R. 2018. Triplex real-time PCR detection of three quarantine Phytophthora pathogens infecting Malus Miller. J. Plant Dis. Prot. 125:325-330.   DOI
14 Marques, J. P. R., Amorim, L., Sposito, M. B., Marin, D. and Appezzato-da-Gloria, B. 2013. Infection of citrus pollen grains by Colletotrichum acutatum. Eur. J. Plant Pathol. 136:35-40.   DOI
15 Saez, A., Negri, P., Viel, M. and Aizen, M. A. 2019. Pollination efficiency of artificial and bee pollination practices in kiwifruit. Sci. Hortic. 246:1017-1021.   DOI
16 McFrederick, Q. S. and Rehan, S. M. 2016. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25:2302-2311.   DOI
17 Nam, K.-W., Moon, B.-W. and Yoon, D.-H. 2019. Morphological characteristics and germination and fertilization abilities of five pollen varieties for 'Niitaka' pear (Pyrus pyrifolia Nakai) artificial pollination. Hortic. Sci. Technol. 37:687-695.
18 Obersteiner, A., Gilles, S., Frank, U., Beck, I., Haring, F., Ernst, D., Rothballer, M., Hartmann, A., Traidl-Hoffmann, C. and Schmid, M. 2016. Pollen-associated microbiome correlates with pollution parameters and the allergenicity of pollen. PLoS ONE 11:e0149545.   DOI
19 Orozco-Mosqueda, M. D. C., Rocha-Granados, M. D. C., Glick, B. R. and Santoyo, G. 2018. Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol. Res. 208:25-31.   DOI
20 Quinet, M. and Jacquemart, A.-L. 2020. Troubles in pear pollination: effects of collection and storage method on pollen viability and fruit production. Acta Oecol. 105:103558.   DOI
21 Vannette, R. L. 2020. The floral microbiome: plant, pollinator, and microbial perspectives. Annu. Rev. Ecol. Evol. Syst. 51:363-386.   DOI