DOI QR코드

DOI QR Code

RNA-seq Gene Profiling Reveals Transcriptional Changes in the Late Phase during Compatible Interaction between a Korean Soybean Cultivar (Glycine max cv. Kwangan) and Pseudomonas syringae pv. syringae B728a

  • Myoungsub, Kim (Department of Applied Bioscience, Dong-A University) ;
  • Dohui, Lee (Department of Applied Bioscience, Dong-A University) ;
  • Hyun Suk, Cho (Department of Applied Bioscience, Dong-A University) ;
  • Young-Soo, Chung (Department of Applied Bioscience, Dong-A University) ;
  • Hee Jin, Park (Department of Molecular Genetics, Dong-A University) ;
  • Ho Won, Jung (Institute of Agricultural Life Science, Dong-A University)
  • Received : 2022.08.25
  • Accepted : 2022.09.26
  • Published : 2022.12.01

Abstract

Soybean (Glycine max (L) Merr.) provides plant-derived proteins, soy vegetable oils, and various beneficial metabolites to humans and livestock. The importance of soybean is highly underlined, especially when carbon-negative sustainable agriculture is noticeable. However, many diseases by pests and pathogens threaten sustainable soybean production. Therefore, understanding molecular interaction between diverse cultivated varieties and pathogens is essential to developing disease-resistant soybean plants. Here, we established a pathosystem of the Korean domestic cultivar Kwangan against Pseudomonas syringae pv. syringae B728a. This bacterial strain caused apparent disease symptoms and grew well in trifoliate leaves of soybean plants. To examine the disease susceptibility of the cultivar, we analyzed transcriptional changes in soybean leaves on day 5 after P. syringae pv. syringae B728a infection. About 8,900 and 7,780 differentially expressed genes (DEGs) were identified in this study, and significant proportions of DEGs were engaged in various primary and secondary metabolisms. On the other hand, soybean orthologs to well-known plant immune-related genes, especially in plant hormone signal transduction, mitogen-activated protein kinase signaling, and plant-pathogen interaction, were mainly reduced in transcript levels at 5 days post inoculation. These findings present the feature of the compatible interaction between cultivar Kwangan and P. syringae pv. syringae B728a, as a hemibiotroph, at the late infection phase. Collectively, we propose that P. syringae pv. syringae B728a successfully inhibits plant immune response in susceptible plants and deregulates host metabolic processes for their colonization and proliferation, whereas host plants employ diverse metabolites to protect themselves against infection with the hemibiotrophic pathogen at the late infection phase.

Keywords

Acknowledgement

This work was supported by the New Breeding Technologies Development Program of the Rural Development Administration (PJ01477702 and PJ01653304) (Ho Won Jung), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea (2020R1A6A1A03047729) (Ho Won Jung and Hee Jin Park), and the Green Fusion Technology Graduate School Program of the Ministry of Environment (Myoungsub Kim, Dohui Lee).

References

  1. Bao, Y. and Howell, S. H. 2017. The unfolded protein response supports plant development and defense as well as responses to abiotic stress. Front. Plant Sci. 8:344.
  2. Bolger, A. M., Lohse, M. and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  3. Carter, T. E., Nelson, R. L., Sneller, C. H. and Cui, Z. 2004. Genetic diversity in soybean. In: Soybeans: improvement, production, and uses, 3rd ed. eds. by R. M. Shibles, J. E. Harper, R. F. Wilson and R. C. Shoemaker, pp. 303-416. American Society of Agronomy, Madison, WI, USA.
  4. Chakraborty, R., Macoy, D. M., Lee, S. Y., Kim, W.-Y. and Kim, M. G. 2017. Tunicamycin-induced endoplasmic reticulum stress suppresses plant immunity. Appl. Biol. Chem. 60:623-630. https://doi.org/10.1007/s13765-017-0319-3
  5. Chen, Y., Lun, A. T. L. and Smyth, G. K. 2016. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 5:1438.
  6. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. https://doi.org/10.1016/j.cell.2006.02.008
  7. Cooper, B., Campbell, K. B., McMahon, M. B. and Luster, D. G. 2013. Disruption of Rpp1-mediated soybean rust immunity by virus-induced gene silencing. Plant Signal. Behav. 8:e27543.
  8. Cregeen, S., Radisek, S., Mandelc, S., Turk, B., Stajner, N., Jakse, J. and Javornik, B. 2015. Different gene expressions of resistant and susceptible Hop cultivars in response to infection with a highly aggressive strain of Verticillium albo-atrum. Plant Mol. Biol. Rep. 33:689-704. https://doi.org/10.1007/s11105-014-0767-4
  9. Dangl, J. L. and Jones, J. D. G. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833. https://doi.org/10.1038/35081161
  10. Delgado-Cerrone, L., Alvarez, A., Mena, E., Ponce de Leon, I. and Montesano, M. 2018. Genome-wide analysis of the soybean CRK-family and transcriptional regulation by biotic stress signals triggering plant immunity. PLoS ONE 13:e0207438.
  11. Delplace, F., Huard-Chauveau, C., Berthom, R. and Roby, D. 2022. Network organization of the plant immune system: from pathogen perception to robust defense induction. Plant J. 109:447-470. https://doi.org/10.1111/tpj.15462
  12. Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539-548. https://doi.org/10.1038/nrg2812
  13. Ercolani, G. L., Hagedorn, D. J., Kelman, A. and Rand, R. E. 1974. Epiphytic survival of Pseudomonas syringae on hairy vetch in relation to epidemiology of bacterial brown spot of bean in Wisconsin. Phytopathology 64:1330-1339. https://doi.org/10.1094/Phyto-64-1330
  14. Faske, T., Kirkpatrick, T., Zhou, J. and Tzanetakis, I. 2014. Soybean diseases. In: Arkansas soybean production handbook - MP197, pp. 1-18. The Soybean Commodity Committee of the Cooperative Extension Service, University of Arkansas, Fayetteville, AR, USA.
  15. Feil, H., Feil, W. S., Chain, P., Larimer, F., DiBartolo, G., Copeland, A., Lykidis, A., Trong, S., Nolan, M., Goltsman, E., Thiel, J., Malfatti, S., Loper, J. E., Lapidus, A., Detter, J. C., Land, M., Richardson, P. M., Kyrpides, N. C., Ivanova, N. and Lindow, S. E. 2005. Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc. Natl. Acad. Sci. U. S. A. 102:11064-11069. https://doi.org/10.1073/pnas.0504930102
  16. Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43:205-227. https://doi.org/10.1146/annurev.phyto.43.040204.135923
  17. Gnanamanickam, S. S. and Ward, E. W. B. 1982. Characterization of Pseudomonas syringae strains causing disease symptoms on soybean. Can. J. Plant Pathol. 4:233-236. https://doi.org/10.1080/07060668209501287
  18. Gyetvai, G., Sonderkaer, M., Gobel, U., Basekow, R., Ballvora, A., Imhoff, M., Kersten, B., Nielsen, K. L. and Gebhardt, C. 2012. The transcriptome of compatible and incompatible interactions of potato (Solanum tuberosum) with Phytophthora infestans revealed by DeepSAGE analysis. PLoS ONE 7:e31526.
  19. Hartman, G. L., Rupe, J. C., Sikora, E. J., Domier, L. L., Davis, J. A. and Steffey, K. L. 2015. Compendium of soybean diseases and pests. 5th ed. American Phytopathological Society, St. Paul, MN, USA. 201 pp.
  20. Helm, M., Qi, M., Sarkar, S., Yu, H., Whitham, S. A. and Innes, R. W. 2019. Engineering a decoy substrate in soybean to enable recognition of the soybean mosaic virus NIa protease. Mol. Plant-Microbe Interact. 32:760-769. https://doi.org/10.1094/MPMI-12-18-0324-R
  21. Hirano, S. S., Baker, L. S. and Upper, C. D. 1996. Raindrop momentum triggers growth of leaf-associated populations of Pseudomonas syringae on field-grown snap bean plants. Appl. Environ. Microbiol. 62:2560-2566. https://doi.org/10.1128/aem.62.7.2560-2566.1996
  22. Hirano, S. S., Clayton, M. K. and Upper, C. D. 1994. Estimation of and temporal changes in means and variances of populations of Pseudomonas syringae on snap bean leaflets. Phytopathology 84:934-940. https://doi.org/10.1094/Phyto-84-934
  23. Hirano, S. S. and Upper, C. D. 1990. Population biology and epidemiology of Pseudomonas syringae. Annu. Rev. Phytopathol. 28:155-177. https://doi.org/10.1146/annurev.py.28.090190.001103
  24. Hirano, S. S. and Upper, C. D. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64:624-653. https://doi.org/10.1128/MMBR.64.3.624-653.2000
  25. Huang, H., Ullah, F., Zhou, D.-X., Yi, M. and Zhao, Y. 2019. Mechanisms of ROS regulation of plant development and stress responses. Front. Plant Sci. 10:800.
  26. Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M. and Ludwikow, A. 2018. Mitogen-activated protein kinase cascades in plant hormone signaling. Front. Plant Sci. 9:1387.
  27. Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  28. Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T. and Yamanishi, Y. 2007. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36:D480-D484. https://doi.org/10.1093/nar/gkm882
  29. Kanehisa, M., Sato, Y. and Kawashima, M. 2022. KEGG mapping tools for uncovering hidden features in biological data. Protein Sci. 31:47-53. https://doi.org/10.1002/pro.4172
  30. Kennelly, M. M., Cazorla, F. M., de Vicente, A., Ramos, C. and Sundin, G. W. 2007. Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis. 91:4-17. https://doi.org/10.1094/pd-91-0004
  31. Kim, D., Paggi, J. M., Park, C., Bennett, C. and Salzberg, S. L. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37:907-915. https://doi.org/10.1038/s41587-019-0201-4
  32. Kim, M.-J., Kim, J. K., Kim, H. J., Pak, J. H., Lee, J.-H., Kim, D.-H., Choi, H. K., Jung, H. W., Lee, J.-D., Chung, Y.-S. and Ha, S.-H. 2012. Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One 7:e48287.
  33. Kim, Y.-J., Lee, K.-W., Cho, S.-K., Oh, Y.-J., Shin, S.-O., Paik, C.-H., Kim, K.-H., Kim, T.-S. and Kim, K.-J. 2011. Selection and quality evaluation of sprout soybean [Glycine max (L.) Merrill] variety for environment-friendly cultivation in southern paddy field. Korean J. Org. Agric. 19:357-372 (in Korean).
  34. Langmead, B. and Salzberg, S. L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9:357-359. https://doi.org/10.1038/nmeth.1923
  35. Lee, C., Choi, M.-S., Kim, H.-T., Yun, H.-T., Lee, B., Chung, Y.-S., Kim, R. W. and Choi, H.-K. 2015. Soybean [Glycine max (L.) Merrill]: importance as a crop and pedigree reconstruction of Korean varieties. Plant Breed. Biotechnol. 3:179-196. https://doi.org/10.9787/PBB.2015.3.3.179
  36. Lee, J., Teitzel, G. M., Munkvold, K., del Pozo, O., Martin, G. B., Michelmore, R. W. and Greenberg, J. T. 2012. Type III secretion and effectors shape the survival and growth pattern of Pseudomonas syringae on leaf surfaces. Plant Physiol. 158:1803-1818. https://doi.org/10.1104/pp.111.190686
  37. Li, M.-W., Wang, Z., Jiang, B., Kaga, A., Wong, F.-L., Zhang, G., Han, T., Chung, G., Nguyen, H. and Lam, H.-M. 2020. Impacts of genomic research on soybean improvement in East Asia. Theor. Appl. Genet. 133:1655-1678. https://doi.org/10.1007/s00122-019-03462-6
  38. Lindemann, J., Arny, D. C. and Upper, C. D. 1984. Use of an apparent infection threshold population of Pseudomonas syringae to predict incidence and severity of brown spot of bean. Phytopathology 74:1334-1339. https://doi.org/10.1094/Phyto-74-1334
  39. Liu, H.-J., Tang, Z.-X., Han, X.-M., Yang, Z.-L., Zhang, F.-M., Yang, H.-L., Liu, Y.-J. and Zeng, Q.-Y. 2015a. Divergence in enzymatic activities in the soybean GST supergene family provides new insight into the evolutionary dynamics of whole-genome duplicates. Mol. Biol. Evol. 32:2844-2859. https://doi.org/10.1093/molbev/msv156
  40. Liu, J.-Z., Graham, M. A., Pedley, K. F. and Whitham, S. A. 2015b. Gaining insight into soybean defense responses using functional genomics approaches. Brief. Funct. Genomics 14:283-290. https://doi.org/10.1093/bfgp/elv009
  41. Liu, Y., Du, H., Li, P., Shen, Y., Peng, H., Liu, S., Zhou, G.-A., Zhang, H., Liu, Z., Shi, M., Huang, X., Li, Y., Zhang, M., Wang, Z., Zhu, B., Han, B., Liang, C. and Tian, Z. 2020. Pangenome of wild and cultivated soybeans. Cell 182:162-176. e13.
  42. Loper, J. E. and Lindow, S. E. 1987. Lack of evidence for the in situ fluorescent pigment production by Pseudomonas syringae pv. syringae on bean leaf surfaces. Phytopathology 77:1449-1454. https://doi.org/10.1094/Phyto-77-1449
  43. Martin, J. A. and Wang, Z. 2011. Next-generation transcriptome assembly. Nat. Rev. Genet. 12:671-682. https://doi.org/10.1038/nrg3068
  44. Meng, H., Sun, M., Jiang, Z., Liu, Y., Sun, Y., Liu, D., Jiang, C., Ren, M., Yuan, G., Yu, W., Feng, Q., Yang, A., Cheng, L. and Wang, Y. 2021. Comparative transcriptome analysis reveals resistant and susceptible genes in tobacco cultivars in response to infection by Phytophthora nicotianae. Sci Rep. 11:809.
  45. Meng, X. and Zhang, S. 2013. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 51:245-266. https://doi.org/10.1146/annurev-phyto-082712-102314
  46. Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C., Guo, X. and Thomas, P. D. 2019. Protocol update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 14:703-721. https://doi.org/10.1038/s41596-019-0128-8
  47. Moreno, A. A., Mukhtar, M. S., Blanco, F., Boatwright, J. L., Moreno, I., Jordan, M. R., Chen, Y., Brandizzi, F., Dong, X., Orellana, A., Pajerowska-Mukhtar, K. M. and Polymenis, M. 2012. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS ONE 7:e31944.
  48. Park, C.-J. and Park, J. M. 2019. Endoplasmic reticulum plays a critical role in integrating signals generated by both biotic and abiotic stress in plants. Front. Plant Sci. 10:399.
  49. Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. and Salzberg, S. L. 2016. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 11:1650-1667. https://doi.org/10.1038/nprot.2016.095
  50. Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T.-C., Mendell, J. T. and Salzberg, S. L. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33:290-295. https://doi.org/10.1038/nbt.3122
  51. Pottinger, S. E., Bak, A., Margets, A., Helm, M., Tang, L., Casteel, C. and Innes, R. W. 2020. Optimizing the PBS1 decoy system to confer resistance to Potyvirus infection in Arabidopsis and soybean. Mol. Plant Microbe-Interact. 33:932-944. https://doi.org/10.1094/MPMI-07-19-0190-R
  52. Ruberti, C., Kim, S.-J., Stefano, G. and Brandizzi, F. 2015. Unfolded protein response in plants: one master, many questions. Curr. Opin. Plant Biol. 27:59-66. https://doi.org/10.1016/j.pbi.2015.05.016
  53. Russell, A. R., Ashfield, T. and Innes, R. W. 2015. Pseudomonas syringae Effector AvrPphB suppresses AvrB-induced activation of RPM1 but not AvrRpm1-induced activation. Mol. Plant Microbe-Interact. 28:727-735. https://doi.org/10.1094/MPMI-08-14-0248-R
  54. Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Haweker, H., Dong, X., Robatzek, S. and Schulze-Lefert, P. 2009. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J. 28:3439-3449. https://doi.org/10.1038/emboj.2009.263
  55. Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N. and Nelson, A. 2019. The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3:430-439. https://doi.org/10.1038/s41559-018-0793-y
  56. Schmutz, J., Cannon, S. B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D. L., Song, Q., Thelen, J. J., Cheng, J., Xu, D., Hellsten, U., May, G. D., Yu, Y., Sakurai, T., Umezawa, T., Bhattacharyya, M. K., Sandhu, D., Valliyodan, B., Lindquist, E., Peto, M., Grant, D., Shu, S., Goodstein, D., Barry, K., Futrell-Griggs, M., Abernathy, B., Du, J., Tian, Z., Zhu, L., Gill, N., Joshi, T., Libault, M., Sethuraman, A., Zhang, X.-C., Shinozaki, K., Nguyen, H. T., Wing, R. A., Cregan, P., Specht, J., Grimwood, J., Rokhsar, D., Stacey, G., Shoemaker, R. C. and Jackson, S. A. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178-183. https://doi.org/10.1038/nature08670
  57. Sonah, H., Zhang, X., Deshmukh, R. K., Borhan, M. H., Fernando, W. G. D. and Belanger, R. R. 2016. Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola. Front. Plant Sci. 7:1784.
  58. Soybean Breeding Team, Upland Crop Div., Crop Experiment and Experiment Station. 1994. A new high seed-protein, small grain and high-yielding soybean variety "Kwangankong. Korean J. Breed. Sci. 16:462.
  59. Thomas, P. D., Kejariwal, A., Campbell, M. J., Mi, H., Diemer, K., Guo, N., Ladunga, I., Ulitsky-Lazareva, B., Muruganujan, A., Rabkin, S., Vandergriff, J. A. and Doremieux, O. 2003. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31:334-341. https://doi.org/10.1093/nar/gkg115
  60. Thulasi Devendrakumar, K., Li, X. and Zhang, Y. 2018. MAP kinase signalling: interplays between plant PAMP- and effectortriggered immunity. Cell. Mol. Life Sci. 75:2981-2989. https://doi.org/10.1007/s00018-018-2839-3
  61. Trapnell, C., Pachter, L. and Salzberg, S. L. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105-1111. https://doi.org/10.1093/bioinformatics/btp120
  62. van Esse, H. P., Fradin, E. F., de Groot, P. J., de Wit, P. J. G. M. and Thomma, B. P. H. J. 2009. Tomato transcriptional responses to a foliar and a vascular fungal pathogen are distinct. Mol. Plant Microbe-Interact. 22:245-258. https://doi.org/10.1094/MPMI-22-3-0245
  63. Vinatzer, B. A., Teitzel, G. M., Lee, M.-W., Jelenska, J., Hotton, S., Fairfax, K., Jenrette, J. and Greenberg, J. T. 2006. The type III effector repertoire of Pseudomonas syringae pv. syringae B728a and its role in survival and disease on host and non-host plants. Mol. Microbiol. 62:26-44. https://doi.org/10.1111/j.1365-2958.2006.05350.x
  64. Wang, X., Liu, W., Chen, X., Tang, C., Dong, Y., Ma, J., Huang, X., Wei, G., Han, Q., Huang, L. and Kang, Z. 2010. Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol. 10:9.
  65. Wang, Z. and Tian, Z. 2015. Genomics progress will facilitate molecular breeding in soybean. Sci. China Life Sci. 58:813-815. https://doi.org/10.1007/s11427-015-4908-2
  66. Wei, Y., Balaceanu, A., Rufian, J. S., Segonzac, C., Zhao, A., Morcillo, R. J. L. and Macho, A. P. 2020. An immune receptor complex evolved in soybean to perceive a polymorphic bacterial flagellin. Nat. Commun. 11:3763.
  67. Xu, Z., Song, N., Ma, L. and Wu, J. 2019. IRE1-bZIP60 pathway is required for Nicotiana attenuata resistance to fungal pathogen Alternaria alternata. Front. Plant Sci. 10:263.
  68. Yeom, W. W., Kim, H. J., Lee, K.-R., Cho, H. S., Kim, J.-Y., Jung, H. W., Oh, S.-W., Jun, S. E., Kim, H. U. and Chung, Y.-S. 2020. Increased production of α-Linolenic acid in soybean seeds by overexpression of Lesquerella FAD3-1. Front. Plant Sci. 10:1812.
  69. Yuan, Y., Yang, Y., Yin, J., Shen, Y., Li, B., Wang, L. and Zhi, H. 2020. Transcriptome-based discovery of genes and networks related to RSC3Q-mediated resistance to Soybean mosaic virus in soybean. Crop Pasture Sci. 71:987.