• Title/Summary/Keyword: plane waves

Search Result 304, Processing Time 0.021 seconds

Current Distributions on the Infinite Conductor Grating Plane for TE Incident Waves (TE 입사파에 의한 무한 평면 격자상의 전류분포)

  • Kim, Heung-Soo;Lee, Sang-Seol
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.1-6
    • /
    • 1990
  • When TE waves incident to the infinite conductor grating plane, current distributions on the strip is found by the spectral domain analysis and the moment method. Current distributions on the strip as the parameter of incident angle of waves are calculated for the grating plane of which strip space is $0.05{\lambda}{\sim}5{\lambda}$, and of which the ration of strip width to its space is 0.4 - 0.8 . In order to varify the validity of the present method, the numerical results are compared with other method.

  • PDF

Reflection of plane harmonic wave in rotating media with fractional order heat transfer

  • Kaur, Iqbal;Lata, Parveen;Singh, Kulvinder
    • Advances in materials Research
    • /
    • v.9 no.4
    • /
    • pp.289-309
    • /
    • 2020
  • The aim of the present investigation is to examine the propagation of plane harmonic waves in transversely isotropic homogeneous magneto visco thermoelastic rotating medium with fractional order heat transfer and two temperature. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) in frequency domain. phase velocities, specific loss, penetration depth, attenuation coefficients of various reflected waves are computed and depicted graphically. The effects of viscosity and fractional order parameter by varying different values are represented graphically.

Reflection and propagation of plane waves at free surfaces of a rotating micropolar fibre-reinforced medium with voids

  • Anya, Augustine Igwebuike;Khan, Aftab
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.605-614
    • /
    • 2019
  • The present paper seeks to investigate propagation and reflection of waves at free surfaces of homogeneous, anisotropic and rotating micropolar fibre-reinforced medium with voids. It has been observed that, in particular when P-wave is incident on the free surface, there exist four coupled reflected plane waves traveling in the medium; quasi-longitudinal displacement (qLD) wave, quasi-transverse displacement (qTD) wave, quasi-transverse microrotational wave and a wave due to voids. Normal mode Analysis usually called harmonic solution method is adopted in concomitant with Snell's laws and appropriate boundary conditions in determination of solution to the micropolar fibre reinforced modelled problem. Amplitude ratios which correspond to reflected waves in vertical and horizontal components are presented analytically. Also, the Reflection Coefficients are presented using numerical simulated results in graphical form for a particular chosen material by the help of Mathematica software. We observed that the micropolar fibre-reinforced, voids and rotational parameters have various degrees of effects to the modulation, propagation and reflection of waves in the medium. The study would have impact to micropolar fibre-reinforecd rotational-acoustic machination fields and future works about behavior of seismic waves.

Effect of generalized thermoelasticity materials with memory

  • Baksi, Arup;Roy, Bidyut Kumar;Bera, Rasajit Kumar
    • Structural Engineering and Mechanics
    • /
    • v.25 no.5
    • /
    • pp.597-611
    • /
    • 2007
  • Many works have been done in classical theory of thermoelasticity in materials with memory by researchers like Nunziato, Chen and Gurtine and many others. No work is located in generalized thermoelasticity regarding materials with memory till date. The present paper deals with the wave propagation in materials with memory in generalized thermoelasticity. Plane progressive waves and Rayleigh waves have been discussed in details. In the classical theory of heat conduction it was observed that heat propagates with infinite speed. This paradox has been removed in the present discussion. The set of governing equations has been developed in the present analysis. The results of wave velocity and attenuation coefficient corresponding to low and high frequency have been obtained. For thermal wave the results show appreciable differences with those in the usual thermoelasticity theory.

A Numerical Solution. Method for Two-dimensional Nonlinear Water Waves on a Plane Beach of Constant Slope

  • Lee, Young-Gill;Heo, Jae-Kyung;Jeong, Kwang-Leol;Kim, Kang-Sin
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2004
  • Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope are numerically simulated using a finite difference method in rectangular grid system. Two-dimensional Navier-Stokes equations and the continuity equation are used for the computations. Irregular leg lengths and stars are employed near the boundaries of body and free surface to satisfy the boundary conditions. Also, the free surface which consists of markers or segments is determined every time step with the satisfaction of kinematic and dynamic free surface conditions. Moreover, marker-density method is also adopted to allow plunging jets impinging on the free surface. The second-order Stokes wave theory is employed for the generation of waves on the inflow boundary. For the simulation of wave breaking phenomena, the computations are carried out with the plane beach of constant slope in surf zone. The results are compared with other existing experimental results. Agreement between the experimental data and the computation results is good.

Analysis of Ultrasound Synthetic Transmit Focusing Using Plane Waves (평면파를 이용한 초음파 합성 송신 집속 기법의 해석)

  • Lee, Jong Pil;Song, Jae Hee;Song, Tai-Kyong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.200-209
    • /
    • 2014
  • In this paper, we present a general model for synthetic transmit focusing method using plane waves (STF-PW) of which the properties are investigated through mathematical analysis and compared with those of the conventional focusing method. The analysis results show that STF-PW produces non-diffracting beams in the sense that their main lobe widths do not change with depth. We also present a method for synthesis of plane waves to obtain a desired main lobe width while preventing grating lobe generation and a method for broadening the region over which the non-diffracting property is maintained. The proposed model and analysis results were validated through computer simulations.

Wave Transmission Analysis of Semi-infinite Mindlin Plates Coupled at an Arbitrary Angle (임의의 각으로 연성된 반무한 Mindlin 판의 파동전달해석)

  • Park, Young-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.12
    • /
    • pp.999-1006
    • /
    • 2014
  • Mindlin plate theory includes the shear deformation and rotatory inertia effects which cannot be negligible as exciting frequency increases. The statistical methods such as energy flow analysis(EFA) and statistical energy analysis(SEA) are very useful for estimation of structure-borne sound of various built-up structures. For the reliable vibrational analysis of built-up structures at high frequencies, the energy transfer relationship between out-of-plane waves and in-plane waves exist in Mindlin plates coupled at arbitrary angles must be derived. In this paper, the new wave transmission analysis is successfully performed for various energy analyses of Mindlin plates coupled at arbitrary angles.

Mean Flow Velocity Measurement Using the Sound Field Reconstruction (음장 재구성에 의한 관내 평균유속 측정)

  • Kim, Kun-Soon;Cheung, Wan-Sup;Kwon, Hyu-Sang;Park, Kyung-Am;Paik, Jong-Seung;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.924-929
    • /
    • 2000
  • This paper addresses a new technique of measuring the mean flow velocity over the cross sectional area of the pipe using sound field reconstruction. When fluid flows in the pipe and two plane waves propagate oppositely through the medium, the flow velocity causes the change of wave number of the plane waves. The wave number of the positive going plane wave decreases and that of negative going one increases in comparison to static medium in the pipe. Theoretical backgrounds of this method are introduced in detail and the measurement of mean flow velocity using the sound field reconstruction is not affected by velocity profile upstream of microphones.

A Method for the Measurement of Flow Rate in a Pipe Using a Microphone Array (등간격으로 배열된 마이크로폰을 이용한 관내 유량측정 방법)

  • 김용범;김양한
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.57-67
    • /
    • 2001
  • Proposed in this paper is a method of measurement of the flow rate in a pipe. The sound waves which are propagated within a pipe are characterized by that the wavenumber in the axial direction is changed according to the flow rate, and these characteristics are used in the present method of measurement of the flow rate. The amount of change in wavenumber of sound waves according to the flow rate can be obtained from the relationship among acoustic pressure signals within a pipe, which are measured by using a microphone array. The flow rate can be obtained by using the amount of change in wavenumber of sound waves and the relational equation of the flow rate. With respect to errors that can occur during the measurement of the flow rate, the types of errors and the method of correction of those errors are presented. This method of measurement of the flow rate has application limitation conditions due to the sensor interval, assumption of sound waves as plane waves, etc. The numerical simulation and experiments for measuring the flow rate of air in a pipe are performed in order to verify the applicability of this method of measurement of the flow rate. The experimental results are shown to be similar to those of the numerical simulation. And the flow rate measured is shown to be consistent with the actual value within 5% error bound.

  • PDF

Propagation of plane waves in an orthotropic magneto-thermodiffusive rotating half-space

  • Sheokand, Suresh Kumar;Kumar, Rajeshm;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.455-468
    • /
    • 2019
  • The present article is aimed at studying the reflection phenomena of plane waves in a homogeneous, orthotropic, initially stressed magneto-thermoelastic rotating medium with diffusion. The enuciation is applied to generalized thermoelasticity based on Lord-Shulman theory. There exist four coupled waves, namely, quasi-longitudinal P-wave (qP), quasi-longitudinal thermal wave (qT), quasi-longitudinal mass diffusive wave (qMD) and quasi-transverse wave (qSV) in the medium. The amplitude and energy ratios for these reflected waves are derived and the numerical computations have been carried out with the help of MATLAB programming. The effects of rotation, initial stress, magnetic and diffusion parameters on the amplitude ratios are depicted graphically. The expressions of energy ratios have also been obtained in explicit form and are shown graphically as functions of angle of incidence. It has been verified that during reflection phenomena, the sum of energy ratios is equal to unity at each angle of incidence. Effect of anisotropy is also depicted on velocities of various reflected waves.