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Abstract

Unsteady nonlinear wave motions on the free surface over a plane beach of constant slope
are numerically simulated using a finite difference method in rectangular grid system.
Two-dimensional Navier-Stokes equations and the continuity equation are used for the
computations. Irregular leg lengths and stars are employed near the boundaries of body
and free surface to satisfy the boundary conditions. Also, the free surface which consists
of markers or segments is determined every time step with the satisfaction of kinematic
and dynamic free surface conditions. Moreover, marker-density method is also adopted to
allow plunging jets impinging on the free surface. The second-order Stokes wave theory is
employed for the generation of waves on the inflow boundary. For the simulation of wave
breaking phenomena, the computations are carried out with the plane beach of constant
slope in surf zone. The results are compared with other existing experimental results.
Agreement between the experimental data and the computation results is good.
Keywords: free surface, finite difference method, plane beach, nonlinear
water waves, marker-density

1 Introduction

As waves approach the surf zone they begin to feel the sea bottom, become steeper and
eventually break. The properties of breaking waves in surf zone provide coastal engineers
with important clues to wave forces, coast erosion, sediment transport, etc. Numerous
experiments were carried out to find the geometry and characteristics of the breaking
waves. Recently, the procedure of plunging breaking is captured by flow visualization
using a high-speed imaging system in a flume (Perlin and He 1996). And, Chen, et al.
(1999) carried out numerical simulations describing plunging breakers including the
splash-up phenomenon by using a two-dimensional Navier-Stokes simulation based on the
VOF method. Galvin (1968) identified collapsing to describe an intermediate breaker type
between plunging and surging. He also introduced an offshore parameter and an inshore
parameter to classify the breaker types which are functions of wave steepness and a beach
slope. These parameters were converted to ¢ , the surf similarity parameter, by Battjes
(1974). Smith and Kraus (1990) performed the laboratory experiments of breaking waves
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on bar and trough beaches and showed that the transition values for the breaker type over
the barred profiles are lower than those on plane slopes. Also, any research works on
turbulent phenomena after breaking have been reported (Basco 1985, Battjes 1988,
Hwung et al 1988). Hino et al. (1984) and Monaghan (1994) simulated the deformation
of periodic waves on a beach by TUMMAC and SPH respectively. Koshizuka et al (1998)
presented a numerical analysis method of breaking waves using the moving particle semi-
implicit(MPS) method. Lin and Liu (1998) applied their numerical model for the
treatment of breaking waves to the simulation of breaking waves in the surf zone.

In this paper, the accuracy of periodic waves numerically generated is tested with
changing free surface movement techniques. In the numerical simulation of free surface
waves, it is important to reduce numerical damping and diffusion and to have the waves
flow through an outflow boundary with no influence inside computational domain.
Various numerical techniques for the treatment of kinematic free surface condition are
briefly introduced and compared to be used for the simulation of the breaking waves. The
hybrid method is used for the simulation of plunging breakers and two-phase flow
method(by using marker-density method) is adopted to simulate flow characteristics after
waves break. The nine numerical tests of the breaking waves on beaches and the free
surface simulations after waves break by two-phase flow method are carried out and the
computational results are compared with some published experimental data.

2 Computational method

The governing equations for the present computations are the following Navier-Stokes
equations and the continuity equation for two-dimensional incompressible viscous flows.
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where u and w are the velocity components in the x and z directions, respectively. u is
the dynamic viscosity coefficient, o is the density, and g is the gravitational acceleration.
For the computation of two-phase flow, the water and air regions are solved with the
constant physical value of the density, respectively.

The governing equations are differentiated with a finite differencing scheme with a fixed
staggered variable mesh system. The Adams-Bashforth scheme is adopted for the time
integration of momentum equations. For the approximations of convection terms, a third
order upstream scheme, a second order hybrid scheme and a first order upstream scheme
are applied with the consideration of the number of neighboring fluid cells. The other
spatial derivative terms are discretized by the centered differentiating scheme. Pressure
distribution is obtained by the solution of the Poisson equation, and the SOR (Sussessive
Over Relaxation) method is employed to solve the finite differencing form of this equation.

The No-slip condition is implemented with an irregular leg length for the calculation of
differential terms around the body surface, and the flux calculation for divergence zero is
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used in a body boundary cell which is involving the body surface. In each body boundary
cell, the velocity and pressure are computed by a simultaneous iteration method until the
pressure is converged.

The dynamic free surface boundary condition is satisfied in the present computation is
P =P on free surface. where F, is the atmospheric pressure. When the Poisson equation
of pressure is solved near the free surface, irregular stars are employed to satisfy the
dynamic free surface boundary condition.

The kinematic free surface boundary condition satisfied in the present computation is as
follows:

Dz-m _, @
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where 77 is the wave height. Eq.(4) shows that the normal velocities of the fluid particle on
the free surface and the free surface boundary must be equal. One of the easy treatments of
the Eq.(4) is to use marker particles moving with local velocity which is calculated from
neighboring fluid cells. Heo and Lee (1996) compared the results of various methods
associated with the kinematic free surface boundary condition and showed that the marker
particle method is more accurate than the line-segment method. They combined the marker
particle and line-segment methods to reduce numerical error and to simulate nonlinear free
surface motion which is accompanied by breaking waves. However, the marker and line-
segment methods are very difficult when addressing the nonlinear free surface motions
after the breaking phenomena of waves. Therefore, the marker-density method is adopted
in our computation for the satisfaction of the kinematic free surface boundary condition
during the wave breaking process. The initial values are set equal to the physical values at
the center of each cell. When each densities of gas and liquid are scalar value p<" and
PP, M , is defined as a scalar value of each density. The variation at the marker-density
of each cell is defined by density function M ,. From the distribution of marker-densities
the location of the interface between the two fluid regions is defined by an appropriate
position in the intermediate region of the density function( p=">and p**>). That is, it is
considered that the fluid of each cell in the intermediate region is mixed with two-phase
fluids. However, it must be noticed that the marrker-density is adopted only for the
determination of the location of the interface. The physical value of density is used for
solving the governing equations of fluid flow in each region, respectively.

The following is the transport equation of the density function, Eq. (5), is employed for
the determination of the location of free surface instead of Eq. (4).
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In order to satisfy the dynamic free surface boundary condition, the irregular star
technique is used in the solution procedure for the Poisson equation of pressure. The
distance between the pressure point of each cell and the interface is called the leg-length.
The leg-length and the pressure on the interface are used in the Poisson equation instead of
the grid spacing and the pressure at the pressure point of the neighboring cell.

In the present computation, the pressure on the interface depends on the fluid flow of the
neighboring region. Therefore, the pressure value on the interface is determined by
extrapolating the pressure from an adjacent cell to the interface. In fact, the pressure on the
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interface is decided by using an equivalent extrapolation in horizontal direction and a
linear extrapolation of the acceleration of gravity in a vertical direction. On the interface,
velocity extrapolation is also necessary to calculate differential terms near the free surface.
When the slope of the interface is greater than 45°, the velocities are horizontally
extrapolated from the interested region to the neighboring region, and the velocity gradient
in the normal direction is approximately neglected at the interface.

3 Computational results

3.1 Wave generation

In many problems including the free surface, numerical diffusion and damping may have
a strong effect on the final result. Hence it is' necessary to check the accuracies in
properties of numerically generated waves in advance. Figure 1 compares the numerically
generated waves at their 10th period with an analytic solution. The height is 0.06m and
the wave length is 1.00m. The wave represented by dashed line was computed with the
hybrid method. i.e. the marker method is used up to 2m in the x direction and after than
the line segment method is combined to treat multi-valued free surface. Significant
damping of the wave is present at the third profiles period due to the line segment method.
The other wave generated by the marker density method shows a good coincidence to the
analytic one.
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Figure 1: Comparison of Wave(Ho = 0.06m, T = 1.0)

3.2 Wave breaking by hybrid method

Breaking waves with various characteristics are simulated by the hybrid method. The
wave conditions are shown in Table 1, and the computational domain are shown in Figure
2. Figure 3 and Figure 4 show vorticity contours of a spilling breaker and a plunging
breaker. Despite of the different breaker type, similar patterns of motion and vortex
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systems are found. It agrees with the postulation by Basco (1985) that both spilling and
plunging breakers have similar initial breaking motions, domain but at different scales.

A\/ S / 5 o
unit oy 100 150
Figure 2: Sketch of the computational
Table 1: Condition of incident waves
Beach Slope | Period W‘?‘Ve Wave Wave Surf Similarity
CASE m T(Sec) Height | Length | Steepness Paramater
Ho(m) Lo (m) Ho/ Lo [N
1 0.80 0.040 1.000 0.040 1.000
2 1/5 0.80 0.060 1.000 0.060 0.816
3 0.80 0.100 1.000 0.100 0.632
4 0.80 0.060 1.000 0.060 0.408
5 0.80 0.080 1.000 0.080 0.354
6 1/10 1.00 0.066 1.561 0.042 0.488
7 1.13 0.060 2.000 0.030 0.577
8 1.28 0.095 2.570 0.037 0.520
9 1/30 1.75 0.152 4.752 0.032 0.186

All the tested waves are classified in Figure 5 in which they are divided into spilling and
plunging breakers. It shows a good coincidence with the transition value of the surf
similarity parameter defined as follows(Battjes 1974).

§ o =m/(Hy/Lg)'"? (6)

surging or collapsing if 3.3<¢ ,
plunging if 0.5<¢ , <33
spilling if 5 ,<05

Wave profiles compared with experimental data by Hino et al (1984) are shown in
Figure 6 and 7 in case of 2 and 3, respectively. The present results agree well with them
except overturning waves are not shown in the experiment. However, it is expected that
plunging breakers will usually occur since the wave conditions are in the plunging breaker
region according to the surf similarity parameter.
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Figure 3: Variation of vorticity contours
with an advancing breaker (case 5)
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Figure 4: Variation of vorticity contours
with an advancing breaker (case 8)
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Figure 5: Breaker type classification at each of the present computations

02 02
——— 2045t ===~ 17.78sec{axep}
L qu’:f,‘;;‘;; 2 —— 3ADsuclrybrid)
o1 5.4secimanier D dzsec(markar
% ) N ¥ pcr il 01 density)
bz e o B 2 N B e N S Loy
R . ; Np——.
00 S PN e ool e
02 7 —-== 17.89secloxep)
-~-- 20.55%0c(sxep} e 3.508ec(hybric)
— A.7onf(hybﬂ¢) e A.3vucimarier—
o BuBSEC(mATKO= density)
ot density) 01 -
00 pore T T T - ul
02
~-~= 20.8558c(exep)
4.808ec(bybrid)
0t e SiB30C(marker—
00 by T
0.2
——-- 1B.0Bsec(axep}
[ 3.708ec{hydrid)
. T asaecimerker
) 01 density) _
[ 1) S ey -
00 P e w -
02 -
==== 20.85ssc{axep} ue —eee 18.16secloxen)
5.00s8c(hybrid) 2'800es o)
01 e 5.B00c{marker= T 4.Bsacimarker—
) donait) 01 censity)
00 L e TR . .
Broro s e x> . P
0.0 R ol
1 i
BE) Rk} LX) X(m) T35 LX

Figure 6: Comparison of free surface
profiles (case 2)
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Figure 7: Comparison of free surface
profiles (case 3)
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Figure 8: Variation of pressure contours Figure 9: Variation of vectors with an
with an advancing breaker advancing breaker
(case 2, by [marker+segment] method) (case 3, by [marker+segment] method)

Pressure contours and velocity vectors are shown in Figure 8 and 9, respectively. The
large magnitude of pressure and velocity vector at the wave crests are shown when the
waves commence to overturn.

3.3 Wave breaking by marker density method

In spite of its successes, the hybrid method can not yield a credible solution if the
plunging jet impinges the undisturbed water. Marker density method is employed to
overcome such difficulties for the simulation of wave breaking phenomena. The beach
have the two different case of wave steepness for computations, 0.06 and 0.10(case 2 and
3), that is, the wave conditions are the same as in section 3.2.

Figures 6 and 7 computed by the hybrid and the marker density method, respectively ,
show that the wave profiles from the marker density method show the better coincidence
with experimental data than the results of hybrid method. Figure 10 shows the high
pressure regions as the wave overturns and impinges. That is same pattern with in section
3.2. Velocity vectors in case of 3 are shown in figure 11, which are also computed with
the marker density method. Since the wave amplitude is 5/3 times larger than the
preceding case, the possibility for plunging breaker is larger than before. A good-looking
plunging breaker occurred almost a period earlier than those for the case 2. The velocity
vectors also become larger as the wave overturns.

4 Conclusions

In this paper nonlinear free surface phenomena in the surf zones are numerically simulated
by the hybrid method and the marker-density method in the rectangular mesh system. The
process of the evolution of plunging breakers is numerically simulated including the
second plunging jet. In spite of the approximations in the free surface and the body
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boundary, the present method, especially the marker density method gave good results
quantitatively as well as qualitatively.

The present computational method can be easily applied to practical engineering
problems especially including complicated nonlinear free surface phenomena. For more
accurate results, further efforts should be devoted to the consideration of the surface
tension, viscous stress and turbulence modeling and to invention of a method which can
treat after-breaking phenomena.

Figure 10: Variation of pressure contours Figure 11: Variation of vectors with an

with an advancing breaker advancing breaker
(case 2, by marker density method) (case 3, by marker density method)
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