DOI QR코드

DOI QR Code

Analysis of Ultrasound Synthetic Transmit Focusing Using Plane Waves

평면파를 이용한 초음파 합성 송신 집속 기법의 해석

  • 이종필 (서강대학교 전자공학과) ;
  • 송재희 (서강대학교 서강미래기술연구원 의료기술연구소) ;
  • 송태경 (서강대학교 전자공학과)
  • Received : 2014.02.10
  • Accepted : 2014.04.15
  • Published : 2014.05.31

Abstract

In this paper, we present a general model for synthetic transmit focusing method using plane waves (STF-PW) of which the properties are investigated through mathematical analysis and compared with those of the conventional focusing method. The analysis results show that STF-PW produces non-diffracting beams in the sense that their main lobe widths do not change with depth. We also present a method for synthesis of plane waves to obtain a desired main lobe width while preventing grating lobe generation and a method for broadening the region over which the non-diffracting property is maintained. The proposed model and analysis results were validated through computer simulations.

본 논문에서는 평면파 합성 송신집속 방법의 모델을 제시하고 수학적 해석을 통해 그 특성을 분석하였으며 일반적인 구형파 기반의 집속 방법과 비교하였다. 이를 통하여 평면파를 이용한 합성 송신집속 방법은 거리에 따라 주엽의 폭이 변하지 않는 비회절 빔을 발생함을 확인하였다. 또한 그레이팅 로브의 발생을 억제하며 원하는 주엽 폭을 얻기 위한 평면파 합성 방법, 그리고 비회절 특성이 유지되는 영역을 효과적으로 확장시킬 수 있는 방법을 제시하였다. 제안된 방법과 해석결과들을 컴퓨터 모의실험을 통해 검증하였다.

Keywords

References

  1. T. K. Song, "Analysis of synthetic aperture techniques for ultrasound linear-scan imaging," J. Biomed. Eng. Res. 20, 503-513 (1999).
  2. J. Bercoff, M. Tanter and M. Fink, "Supersonic shear imaging:A new technique for soft tissue elasticity mapping," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 51, 396-409 (2004). https://doi.org/10.1109/TUFFC.2004.1295425
  3. J. Bercoff, G. Montaldo, T. Loupas, D. Savery, F. Meziere, M. Fink and M. Tanter, "Ultrafast compounding Doppler imaging: Providing full blood flow characterization," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58, 134-147(2011). https://doi.org/10.1109/TUFFC.2011.1780
  4. B. Denarie, T. A. Tangen, I. K. Ekroll, N. Rolim, H. Torp, T. Bjastad and L. Lovstakken, "Coherent plane wave compounding for very high frame ultrasonography of rapidly moving targets," IEEE Trans. Med. Imaging, 32, 1265-1276(2013). https://doi.org/10.1109/TMI.2013.2255310
  5. G. Montaldo, M. Tanter, J. Bercoff, N. Benech and M. Fink, "Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 56, 489-506(2009). https://doi.org/10.1109/TUFFC.2009.1067
  6. J. Durnin, "Exact solutions for nondiffracting beam. I. The scalar theroy," J. Opt. Soc. Amer. 4, 2081-2091(1987). https://doi.org/10.1364/JOSAA.4.002081
  7. J.-Y. Lu and J. F. Greenleaf, "Nondiffracting X waves-Exact solutions to free-space scalar wave equation and their finite aperture realizations," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 39, 19-31(1992). https://doi.org/10.1109/58.166806
  8. M. K. Jeong, T. K. Song, S. B. Park and J. B. Ra, "Generation of sinc wave by a one-dimensional array for applications in ultrasonic imaging," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 43, 285-295(1996). https://doi.org/10.1109/58.485955
  9. J. H. Chang and T.-K. Song, "A new synthetic aperture focusing method to suppress the diffraction of ultrasound," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58, 327-337 (2011). https://doi.org/10.1109/TUFFC.2011.1810
  10. K. B. Ocheltree and L. A. Frizzell, "Sound field calculation for rectangular sources," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 36, 242-248(1989). https://doi.org/10.1109/58.19157
  11. J. A. Jensen, "Field: a program for simulating ultrasound system," Med. Biol. Eng. Comp. 4, Suppl. 1, 351-353 (1996).
  12. A. Macovski, "Ultrasonic imaging using arrays," Proc. IEEE, 67, 484-495(1979). https://doi.org/10.1109/PROC.1979.11278
  13. G.-D. Kim, A study on the optimum design of periodic sparse arrays for ultrasound imaging, (PhD thesis, Graduate School of Sogang University, 2008).
  14. P. Song, M. W. Urban, A. Manduca, H. Zhao, J. F. Greenleaf and S. Chen, "Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams," IEEE Trans. Med. Imaging, 32, 1435-1447(2013). https://doi.org/10.1109/TMI.2013.2257831
  15. N. C. Rouze, M. H. Wang, M. L. Palmeri and K. R. Nightingale, "Parameters affecting the resolution and accuracy of 2-D quantitative shear wave images," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 59, 1729-1740 (2012). https://doi.org/10.1109/TUFFC.2012.2377
  16. R. Y. Chiao and X. Hao, "Coded excitation for diagnostic ultrasound: A system developer's perspective," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 52, 160-170(2005). https://doi.org/10.1109/TUFFC.2005.1406543
  17. B.-H. Kim, G.-D. Kim and T.-K. Song, "A post-compression based ultrasound imaging technique for simultaneous transmit multi-zone focusing," Ultrasonics, 46, 148-154 (2007). https://doi.org/10.1016/j.ultras.2007.01.007
  18. J. Song, S. Kim, H.-Y. Sohn, T.-K. Song and Y. M. Yoo, "Coded excitation for ultrasound tissue harmonic imaging," Ultrasonics, 50, 613-619(2010). https://doi.org/10.1016/j.ultras.2010.01.001

Cited by

  1. Ultrasonic sector imaging using plane wave synthetic focusing with a convex array transducer vol.144, pp.5, 2018, https://doi.org/10.1121/1.5065391
  2. Methods for Grating Lobe Suppression in Ultrasound Plane Wave Imaging vol.8, pp.10, 2018, https://doi.org/10.3390/app8101881