• Title/Summary/Keyword: plane stress/strain

Search Result 444, Processing Time 0.029 seconds

평판용접에 관한 평면변형 열탄소성 해석 (The Plane-Deformation Thermal Elasto-Plastic Analysis During Welding of Plate)

  • 방한서;한길영
    • 한국해양공학회지
    • /
    • 제8권1호
    • /
    • pp.33-40
    • /
    • 1994
  • Welding of structure produces welding residual stresses which influence buckling strength, brittle fracture strength and cold crack on the weld parts. Therefore, it is very important to accurately analyze the residual stress before welding in order to guarantee the safety of weldment. If the weld length is long enough compared to the thickness and the breadth of plate, thermal and mechanical behaviors in the middle portion of the plate are assumed to be uniform along the thickness direction(z-axis). Thus, the following conditions(so-called plane deformation) can be assumed for the plate except near its end;1) distributions of stress and strain are independent on the z-axis;2) plane normal to z-axis before deformation remains plane during and after deformation. In this paper, plane-deformation thermal elasto-plastic problem is formulated by being based on the finite element method. Moreover special regards and paid to the fact that material properties in elastic and plastic region are temperature-dependence. And the method to solve the plane-deformation thermal elasto-plastic problem is shown by using the incremental technique. From the results of analysis, the characterisics of distribution of welding residual stress and plastic strain with the production mechanism are clarified.

  • PDF

Two-plane Hull Girder Stress Monitoring System for Container Ship

  • Choi Jae-Woong;Kang Yun-Tae
    • Journal of Ship and Ocean Technology
    • /
    • 제8권4호
    • /
    • pp.17-25
    • /
    • 2004
  • Hull girder stress monitoring system for container ship uses four long-base-strain-gages at mid-ship to monitor the resultant stresses and the applied moment components of horizontal, vertical and torsional moments. The bending moments are estimated by using the conventional strain-moment relations, however, the torsional moment related to the warping strain requires the assumption of the shape of torsional moments over the hull girder. Though this shape could be a sine function with an adequate period, it largely depends upon certain empirical formulas. This paper introduces additional four long-base-strain-gages at mid-ship to derive the longitudinal slope of the warping strain because this slope is directly related to the torsional moment by Bi-moment concept. An open-channel-type cantilever beam has been selected as a simplified model for container ship and the result has proved that the suggested concepts can estimate the torsional component accurately. Finally this method can become reliable technique to derive all external moments in hull girder stress monitoring system for container ships.

마이크로 ESPI 기법에 의한 면내 변형 측정 민감도 향상 (Improvement of Sensitivity to In-plane Strain/Deformation Measurement by Micro-ESPI Technique)

  • 김동일;기창두;허용학
    • 한국정밀공학회지
    • /
    • 제23권8호
    • /
    • pp.54-63
    • /
    • 2006
  • Enhancement methods of sensitivity to in-plane strain measurement by micro-ESPI(Electronic Speckle Pattern Interferometry) technique were proposed using TiN and Au thin films. Micro-tensile strain over the micro-tensile specimens, prepared in micro-scale by those films, was measured by micro-tensile loading system and micro-ESPI system developed in this study. The subsequent measurement of in-plane tensile strain in the micro-sized specimens was introduced using the micro-ESPI technique, and the micro-tensile stress-strain curves for these films were determined. To enhance the sensitivity to measurement of in-plane tensile strain, algorithms of the phase estimation by using curve fitting of inter-fringe and the discrete Fourier Transform with object-induced dynamic phase shifting were developed. Using these two algorithms, the micro-tensile strain-stress curves were generated. It is shown that the algorithms for enhancement of the sensitivity suggested in this study make the sensitivity to measurement of the in-plane tensile strain increase.

강판의 초기不整이 용접변형.잔류응력에 미치는 영향 (Effect of Initial Defects on Welding Deformation and Residual Stress)

  • 박정응
    • Journal of Welding and Joining
    • /
    • 제17권4호
    • /
    • pp.76-84
    • /
    • 1999
  • The residual stress generated when the steel plates were produced, did not influence on the out-of-plane deformation and residual stress generated by welding. When the initial deflection shape was a concave(Type I), the out-of-plane deformation became the same shape as that of the initial deflection and its magnitude became small. When the initial deflection made a winding in the welding direction(Type III), the out-of-plane deformation became large in the plate width. The initial deflection shape did not influence on residual stress and plastic strain produced by welding.

  • PDF

새로운 평면변형률 시험장비의 개발과 적용성 검증 (A Newly-developed Plane Strain Testing Device and Its Applicability)

  • 김창엽;이용선;정충기
    • 한국지반공학회논문집
    • /
    • 제22권1호
    • /
    • pp.5-14
    • /
    • 2006
  • 본 연구에서는 평면변형률조건하에서 발생 가능한 다양한 응력조건을 보다 자유롭게 구현할 수 있는 간편한 형태의 평면변형률 시험장비를 새롭게 개발하였다. 개발된 시험장비의 적용성은 먼저 이상화된 가정조건하에서 이론적으로 검토되었으며, 실제 점성토시료에 대한. 일련의 평면변형률시험을 통해 실험적으로 확인 검증되었다. 그 결과 개발된 시험장비는 기존의 평면변형률 시험장비들에 비해 광범위한 적용성을 가지고 있음을 확인할 수 있었다. 또한 개발된 시험장비는 일반적인 삼축시험용 재하장치만으로도 다양한 응력조건에 대한 평면변형률시험이 가능하므로, 향후 관련분야에서 그 활용도가 매우 높을 것으로 기대된다.

판재의 이론적 변형한계 스트레인의 면외압 의존성 (Effect of Out-of- Plane Stress on the theoretical Forming Limit Strain of Sheet Metals)

  • 정태훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.162-169
    • /
    • 2004
  • In press forming of sheet metals, the material sheet is usually subjected to very large plastic strain under in-plane stressing. Moreover, the sheet also very often is subjected to out-of-plane compressive force between tools such as the upper and lower dies, the blank holder and the die, and so forth. In this paper, it is clearly demonstrated theoretically that out-of-plane stress may notably raise the forming limit strain and thus it can be effectively utilized to avoid earlier fracture of the sheet in press forming.

  • PDF

Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • 제4권1호
    • /
    • pp.19-37
    • /
    • 2012
  • This paper presents the results of analytical and numerical analyses of the effects of performing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay. Closed-form solutions are obtained which allow the determination of the principal effective stresses and the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical state is not equal to the mean of the other two principal stresses, except when the clay is initially isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by means of the Almansi finite strain approach. Results are compared with published data which were determined using finite element and finite difference methods.

평면변형률 상태 하에서 유한요소해석을 이용한 균열닫힘 거동 예측 및 평가 (Finite Element Analysis of Fatigue Crack Closure under Plane Strain State)

  • 이학주;송지호;강재윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.202-207
    • /
    • 2004
  • An elastic-plastic finite element analysis of fatigue crack closure is performed for plane strain conditions. The stabilization behavior of crack opening level and the effect of mesh size on the crack opening stress are investigated. In order to obtain a stabilized crack opening level for plane strain conditions, the crack must be advanced through approximately four times the initial monotonic plastic zone. The crack opening load tends to increase with the decrease of mesh size. The mesh size nearly equal to the theoretical plane strain cyclic plastic zone size may provide reasonable numerical results comparable with experimental crack opening data. The crack opening behavior is influenced by the crack growth increment and discontinuous opening behavior is observed. A procedure to predict the most appropriate mesh size for different stress ratio is suggested. Crack opening loads predicted by the FE analysis based on the procedure suggested resulted in good agreement with experimental ones within the error of 5 %. Effect of the distance behind the crack tip on the crack opening load determined by the ASTM compliance offset method based on the load-displacement relation and by the rotational offset method based on the load-differential displacement relation is investigated. Optimal gage location and method to determine the crack opening load is suggested.

  • PDF

Delamination of non-linear viscoelastic beams under bending in the plane of layers

  • Victor I. Rizov
    • Coupled systems mechanics
    • /
    • 제12권4호
    • /
    • pp.297-313
    • /
    • 2023
  • This paper deals with delamination analysis of non-linear viscoelastic multilayered beam subjected to bending in the plane of the layers. For this purpose, first, a non-linear viscoelastic model is presented. In order to take into account the non-linear viscoelastic behaviour, a non-linear spring and a non-linear dashpot are assembled in series with a linear spring connected in parallel to a linear dashpot. The behaviours of the non-linear spring and dashpot are described by applying non-linear stress-strain and stress-rate of strain relationships, respectively. The constitutive law of the model is derived. Due to the non-linear spring and dashpot, the constitutive law is non-linear. This law is used for describing the time-dependent mechanical behaviour of the beam under consideration. The material properties involved in the constitutive law vary along the beam length due to the continuous material inhomogeneity of the layers. Solution of the strain energy release rate for the delamination is obtained by analyzing the balance of the energy with considering of the non-linear viscoelastic behaviour. The strain energy release rate is found also by using the complementary strain energy for verification. A parametric study is carried-out by using the solution obtained. The solutions derived and the results obtained help to understand the time-dependent delamination of non-linear viscoelastic beams under loading in the plane of layers.

Comparison of error estimation methods and adaptivity for plane stress/strain problems

  • Ozakca, Mustafa
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.579-608
    • /
    • 2003
  • This paper deals with adaptive finite element analysis of linearly elastic structures using different error estimators based on flux projection (or best guess stress values) and residual methods. Presentations are given on a typical h-type adaptive analysis, a mesh refinement scheme and the coupling of adaptive finite element analysis with automatic mesh generation. Details about different error estimators are provided and their performance, reliability and convergence are studied using six node quadratic triangular elements. Several examples are presented to demonstrate the reliability of different error estimators.