• Title/Summary/Keyword: pixel-based processing

Search Result 438, Processing Time 0.025 seconds

Image Denoising Using Nonlocal Similarity and 3D Filtering (비지역적 유사성 및 3차원 필터링 기반 영상 잡음제거)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1886-1891
    • /
    • 2017
  • Denoising which is one of major research topics in the image processing deals with recovering the noisy images. Natural images are well known not only for their local but also nonlocal similarity. Patterns of unique edges and texture which are crucial for understanding the image are repeated over the nonlocal region. In this paper, a nonlocal similarity based denoising algorithm is proposed. First for every blocks of the noisy image, nonlocal similar blocks are gathered to construct a overcomplete data set which are inherently sparse in the transform domain due to the characteristics of the images. Then, the sparse transform coefficients are filtered to suppress the non-sparse additive noise. Finally, the image is recovered by aggregating the overcomplete estimates of each pixel. Performance experiments with several images show that the proposed algorithm outperforms the conventional methods in removing the additive Gaussian noise effectively while preserving the image details.

Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos (해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-163
    • /
    • 2009
  • Incident wave angles are conventionally estimated by the directional spectrum analysis of wave data collected from in-situ sensors. The in-situ measurements are limited in monitoring incident wave angles in the wide surf zone, since the techniques are typically expensive, labor-intensive, and point-measuring. In this study, estimation of incident wave angles using wave crest features captured in digital video imagery is proposed to observe incident wave directions over the surf zone. Line signatures of wave crests having high image pixel intensities are extracted by moving an interrogation window to identify high intensity pixels in sequential video images. Wave angles are computed by taking the first derivative of the extracted crest signatures, i.e. local slope of the crest signatures in the two-dimensional physical plane. Compared to the wave angle estimates obtained by the directional spectrum analysis, video-based wave angle estimates show good agreements in general.

Comparison of Geomorphological Parameters Derived from Different Digital Elevation Model Resolutions in Chuncheon, South Korea (수치표고모델 해상도에 따라 도출된 춘천지역의 지형학적 매개변수 비교)

  • LEE, Jun-Gu;SUH, Young-Cheol;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.106-114
    • /
    • 2018
  • DEM(Digital Elevation Model) are now easily produced with advancing remote sensing technology. Depending on desired task, UAV can produce high resolution DEM. But high resolution comes with issues of data storage and processing time and cost. To check the effect of DEM resolution, this study compares six geomorphological parameters derived from different resolution DEM in a test area around Chuncheon, Korea. The comparison analysis was based on statistics of each derivatives of slope, curvature, flow direction, flow accumulation, flow length and basin. As a result, it was found that DEM remained unchanged and so did the flow accumulation area. However, slope, curvature, flow length and basin numbers were decreased with the normalization of increasing pixel size. DEM resolution should be carefully selected depending on the precision of application required.

Digital Mapping Based on Digital Ortho Images (수치정사투영영상을 이용한 수치지도제작)

  • 이재기;박경식
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • In the recent day, the necessity and the effective usage are increased rapidly, and it is applied in many other fields as well as in the field of ortho-photo map. In this study, we extract each objects on the aerial image and automatically classify graphic information to produce digital map using only digital ortho-image without particular drawing devices for producing digital map. For this purpose, we have applied a lot of the image processing techniques and fuzzy theory, classified outline and lane of road and building, and had each layer according to each feature. Especially, in the case of the building, the outer vector lines extracted by pixel unit at the building were very complex, but we have developed the program to be expressed by I-dimensional linear type between building corners. In the result of this study, we could not extract and recognize all of the object on the image all together, but we have got the error within 50cm using semi-automatic technique. Therefore, this method will be used effectively in producing 1/5,000 digital map.

  • PDF

Salt and Pepper Noise Remove Considering High Frequency Region (고주파 영역을 고려한 Salt and Pepper 잡음 제거)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.530-532
    • /
    • 2018
  • Digital imaging equipment has been used for a variety of purposes in a wide range of society and has become an important element of the fourth industrial revolution. However, there are various causes of noise in the process of transmitting / receiving data and processing of the equipment, thus affecting the accuracy and reliability of the equipment. In this paper, we propose an image restoration algorithm based on pixel range set by standard deviation to effectively remove Salt and Pepper noise. In the conventional methods, the performance degrades in the edge and high frequency components of the image. However, the proposed method has better noise reduction performance than the conventional method by performing the noise elimination considering the image boundary. It has confirmed that the performance of such PSNR and magnified image, the experimental results showed that the proposed algorithm superior compared to existing methods.

  • PDF

Depth Boundary Sharpening for Improved 3D View Synthesis (3차원 합성영상의 화질 개선을 위한 깊이 경계 선명화)

  • Song, Yunseok;Lee, Cheon;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.9
    • /
    • pp.786-791
    • /
    • 2012
  • This paper presents a depth boundary sharpening method for improved view synthesis in 3D video. In depth coding, distortion occurs around object boundaries, degrading the quality of synthesized images. In order to encounter this problem, the proposed method estimates an edge map for each frame to filter only the boundary regions. In particular, a window-based filter is employed to choose the most reliable pixel as the replacement considering three factors: frequency, similarity and closeness. The proposed method was implemented as post-processing of the deblocking filter in JMVC 8.3.Compared to the conventional methods, the proposed method generated 0.49 dB PSNR increase and 16.58% bitrate decrease on average. The improved portions were subjectively confirmed as well.

A Vehicle License Plate Recognition Using the Feature Vectors based on Mesh and Thinning (메쉬 및 세선화 기반 특징 벡터를 이용한 차량 번호판 인식)

  • Park, Seung-Hyun;Cho, Seong-Won
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.705-711
    • /
    • 2011
  • This paper proposes an effective algorithm of license plate recognition for industrial applications. By applying Canny edge detection on a vehicle image, it is possible to find a connected rectangular, which is a strong candidate for license plate. The color information of license plate separates plates into white and green. Then, OTSU binary image processing and foreground neighbor pixel propagation algorithm CLNF will be applied to each license plates to reduce noise except numbers and letters. Finally, through labeling, numbers and letters will be extracted from the license plate. Letter and number regions, separated from the plate, pass through mesh method and thinning process for extracting feature vectors by X-Y projection method. The extracted feature vectors are compared with the pre-learned weighting values by backpropagation neural network to execute final recognition process. The experiment results show that the proposed license plate recognition algorithm works effectively.

Segmentation and Recognition of Traffic Signs using Shape Information and Edge Image in Real Image (실영상에서 형태 정보와 에지 영상을 이용한 교통 표지판 영역 추출과 인식)

  • Kwak, Hyun-Wook;Oh,Jun-Taek;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.149-158
    • /
    • 2004
  • This study proposes a method for segmentation and recognition of traffic signs using shape information and edge image in real image. It first segments traffic sign candidate regions by connected component algorithm from binary images, obtained by utilizing the RGB color ratio of each pixel in the image, and then extracts actual traffic signs based on their symmetries on X- and Y-axes. Histogram equalization is performed for unsegmented candidate regions caused by low contrast in the image. In the recognition stage, it utilizes shape information including projection profiles on X- and Y-axes, moment, and the number of crossings and distance which concentric circular patterns and 8-directional rays from region center intersects with edges of traffic signs. It finally performs recognition by measuring similarity with the templates in the database. It will be shown from several experimental results that the system is robust to environmental factors, such as light and weather condition.

System Design and Performance Analysis of 3D Imaging Laser Radar for the Mapping Purpose (맵핑용 3차원 영상 레이저 레이다의 시스템 설계 및 성능 분석)

  • La, Jongpil;Ko, Jinsin;Lee, Changjae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • The system design and the system performance analysis of 3D imaging laser radar system for the mapping purpose is addressed in this article. For the mapping, a push-bloom scanning method is utilized. The pulsed fiber laser with high pulse energy and high pulse repetition rate is used for the light source of laser radar system. The high sensitive linear mode InGaAs avalanche photo-diode is used for the laser receiver module. The time-of-flight of laser pulse from the laser to the receiver is calculated by using high speed FPGA based signal processing board. To reduce the walk error of laser pulse regardless of the intensity differences between pulses, the time of flight is measured from peak to peak of laser pulses. To get 3D image with a single pixel detector, Risley scanner which stirs the laser beam in an ellipsoidal pattern is used. The system laser energy budget characteristics is modeled using LADAR equation, from which the system performances such as the pulse detection probability, false alarm and etc. are analyzed and predicted. The test results of the system performances are acquired and compared with the predicted system performance. According to test results, all the system requirements are satisfied. The 3D image which was acquired by using the laser radar system is also presented in this article.

An effective edge detection method for noise images based on linear model and standard deviation (선형모형과 표준편차에 기반한 잡음영상에 효과적인 에지 검출 방법)

  • Park, Youngho
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.813-821
    • /
    • 2020
  • Recently, research using unstructured data such as images and videos has been actively conducted in various fields. Edge detection is one of the most useful image enhancement techniques to improve the quality of the image process. However, it is very difficult to perform edge detection in noise images because the edges and noise having high frequency components. This paper uses a linear model and standard deviation as an effective edge detection method for noise images. The edge is detected by the difference between the standard deviation of the pixels included in the pixel block and the standard deviation of the residual obtained by fitting the linear model. The results of edge detection are compared with the results of the Sobel edge detector. In the original image, the Sobel edge detection result and the proposed edge detection result are similar. Proposed method was confirmed that the edge with reduced noise was detected in the various levels of noise images.