Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos

해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화

  • Yoo, Je-Seon (Climate Change & Coastal Disaster Research Department, KORDI) ;
  • Shin, Dong-Min (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Cho, Yong-Sik (Department of Civil and Environmental Engineering, Hanyang University)
  • 유제선 (한국해양연구원 기후연안재해연구부) ;
  • 신동민 (한양대학교 건설환경공학과) ;
  • 조용식 (한양대학교 건설환경공학과)
  • Published : 2009.04.30

Abstract

Incident wave angles are conventionally estimated by the directional spectrum analysis of wave data collected from in-situ sensors. The in-situ measurements are limited in monitoring incident wave angles in the wide surf zone, since the techniques are typically expensive, labor-intensive, and point-measuring. In this study, estimation of incident wave angles using wave crest features captured in digital video imagery is proposed to observe incident wave directions over the surf zone. Line signatures of wave crests having high image pixel intensities are extracted by moving an interrogation window to identify high intensity pixels in sequential video images. Wave angles are computed by taking the first derivative of the extracted crest signatures, i.e. local slope of the crest signatures in the two-dimensional physical plane. Compared to the wave angle estimates obtained by the directional spectrum analysis, video-based wave angle estimates show good agreements in general.

해안에서 입사파향은 일반적으로 실측 파랑자료로부터 생성한 파향 스펙트럼 분석을 통하여 구하지만, 파향의 실측기법은 현장 계기설치시 많은 인력과 비용이 소요되기 때문에 전 쇄파지역에 걸쳐 입사파향을 관측하기에는 어려움이 따른다. 이러한 이유로, 본 연구는 해안 디지털 비디오 자료에 나타나는 입사파의 파봉선을 이용하여 쇄파지역에서 입사파의 변화를 관측하는 기술을 제안한다. 파봉선은 이미지 상에서 선인식 기법을 이용하여 이미지 강도가 큰 픽셀들을 추적해 나감으로써 추출한다. 입사파향은 추출된 파봉선의 일차미분값, 즉, 실제 평면좌표 공간에서 파봉선의 기울기를 계산하여 구한다. 비디오 자료로부터 입사파향의 측정결과는 실측 파랑자료의 파향 스펙트럼으로부터 구한 파향 계산결과와 비교적 잘 일치한다.

Keywords

References

  1. 유제선, 신동민, 조용식 (2008). 해안 디지털 비디오를 이용한 쇄파지역에서의 파랑궤적 측정. 한국해안해양공학회지, 20(4), 333-341
  2. Dugan, J.P., Piotrowski, C.C. and Williams, J.Z. (2001). Water depth and surface current retrievals from airborne optical measurements of surface gravity wave dispersion. Journal of Geophysical Research, 106(C8), 16903-16915 https://doi.org/10.1029/2000JC000369
  3. Haas, K., Demir, H., Work, P., Voulgaris, G. and Obley, S. (2004). Myrtle Beach Nearshore Experiment, Dec 10 to Dec 15th, 2003, PartII: Morphodynamic & Remote Imagery Measurements, Technical Report. School of Civil and Envi. Eng., Georgia Tech-Savannah
  4. Holland, K.T., Holman, R.A. and Lippmann, T.C. (1997). Practical use of video imagery in neareshore oceanographic field studies. IEEE Journal of Oceanic Engineering, 22(1), 81-92 https://doi.org/10.1109/48.557542
  5. Holland, K.T., Holman, R.A. and Sallenger, A.H. (1991). Estimation of overwash bore velocities using video techniques. Coastal Sediments' 91, 489-497
  6. Inman, D.L. and Bagnold, R.A. (1963). 'Littoral Processes' in The Sea. M.N. Hill, ed., 3, 529-553
  7. Leu, L.G., Kuo, Y.Y. and Lui, C.T. (1999). Coastal bathymetry from the wave spectrum of SPOT images. Coastal Engineering Journal, 41, 21-41 https://doi.org/10.1142/S0578563499000036
  8. Lippmann, T.C. and Holman, R.A. (1991). Phase speed and angle of breaking waves measured with video techniques. Coastal Sediments' 91, 542-556
  9. Longuet-Higgins, M.S. (1970). Longshore current generated by obliquely incident sea waves 1 and 2, Journal of Geophysical Research, 75(33), 6779-6801
  10. Longuet-Higgins, M.S., Cartwright, D.E. and Smith, N.D. (1963). Observations of the directional spectrum of sea waves using the motions of a floating buoy. In: Ocean Wave Spectra, Prentice-Hall, 111-136
  11. Obley, S., Voulgaris, G., Haas, K.A., Demir, H. and Work, P.A. (2004). Myrtle beach nearshore experiment, Dec. 10 to Dec. 15, 2003, part1: Hydrodynamic measurements, Technical report, University of South Carolina CPSD Technical report
  12. Pawka, S.S. (1983). Island shadows in wave directional spectra. Journal of Geophysical Research, 88(C4), 2579-2591 https://doi.org/10.1029/JC088iC04p02579
  13. Splinter, K.D. and Holman, R.A. (2006). Bathymetric estimation based on wave refraction patterns. Proc. 30th Coast. Engrg. Conf., ASCE, 451-463