DOI QR코드

DOI QR Code

Comparison of Geomorphological Parameters Derived from Different Digital Elevation Model Resolutions in Chuncheon, South Korea

수치표고모델 해상도에 따라 도출된 춘천지역의 지형학적 매개변수 비교

  • LEE, Jun-Gu (Dept. of Civil Engineering, Pukyong National University) ;
  • SUH, Young-Cheol (Dept. of Civil Engineering, Pukyong National University) ;
  • LEE, Dong-Ha (Dept. of Civil Engineering, Kangwon National University)
  • Received : 2018.03.11
  • Accepted : 2018.03.23
  • Published : 2018.03.31

Abstract

DEM(Digital Elevation Model) are now easily produced with advancing remote sensing technology. Depending on desired task, UAV can produce high resolution DEM. But high resolution comes with issues of data storage and processing time and cost. To check the effect of DEM resolution, this study compares six geomorphological parameters derived from different resolution DEM in a test area around Chuncheon, Korea. The comparison analysis was based on statistics of each derivatives of slope, curvature, flow direction, flow accumulation, flow length and basin. As a result, it was found that DEM remained unchanged and so did the flow accumulation area. However, slope, curvature, flow length and basin numbers were decreased with the normalization of increasing pixel size. DEM resolution should be carefully selected depending on the precision of application required.

수치표고모델(DEM, Digital Elevation Model)은 원격 탐사 기술의 발전으로 제작이 용이해졌다. 최근에는 작업의 요구사항에 따라 무인항공기(UAV)를 이용해서도 고해상도의 수치표고모델을 생산할 수 있지만, 고해상도는 데이터 저장 및 처리에 대한 시간과 비용의 문제를 동반한다. 본 연구에서는 수치표고모델 해상도의 효과를 확인하기 위하여 춘천을 대상 지역으로 하여 다양한 해상도의 수치표고모델로부터 얻은 6개의 지형적 매개변수를 비교하였다. 비교 분석은 지형의 기울기, 곡률, 유수의 방향, 유수의 축적(flow accumulation), 유수의 거리 및 유역에 대한 통계 분석을 기반으로 하였다. 그 결과, 수치표고모델의 표고와 유수의 축적 영역에는 변화가 없음을 확인할 수 있었으나, 기울기, 곡률, 유수의 거리 및 유역의 수는 픽셀 크기가 증가함에 따라 감소하였다. 따라서, 수치표고모델의 해상도는 요구되는 정밀도에 따라 신중하게 선택되어야 한다.

Keywords

References

  1. Acharya, T.D., I.T. Yang, and D.H. Lee. 2018. Comparative analysis of Digital Elevation Models between AW3D30, SRTM30 and airborne LiDAR: a case of Chuncheon, South Korea. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 36(1): 17-24. https://doi.org/10.7848/KSGPC.2018.36.1.17
  2. Acharya, T.D., I.T. Yang, and D.H. Lee. 2017a. GIS-based landslide susceptibility mapping of Bhotang, Nepal using frequency ratio and statistical index methods. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 35(5): 357-364. https://doi.org/10.7848/KSGPC.2017.35.5.357
  3. Acharya, T.D., I.T. Yang, and D.H. Lee. 2017b. GIS-based preliminary feasibility study for the optimal route selection for China-India railway through Nepal." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 35(4): 281-289. https://doi.org/10.7848/KSGPC.2017.35.4.281
  4. Acharya, T.D., I.T. Yang, and D.H. Lee. 2016. Surface water area delineation in Landsat OLI Image using reflectance and SRTM DEM derivatives. 2016 Conference on Geo-Spatial Information, The Korean Society for Geospatial Information Science, Gunsan, pp.233-234.
  5. Dawod, G. and K Al-Ghamdi. 2017. Reliability of recent global digital elevation models for geomatics applications in Egypt and Saudi Arabia. Journal of Geographic Information System 9(6):685-698. https://doi.org/10.4236/jgis.2017.96043
  6. Goulden, T., C. Hopkinson, R. Jamieson and S. Sterling. 2016. Sensitivity of DEM, slope, aspect and watershed attributes to LiDAR measurement uncertainty. Remote Sensing of Environment 179:23-35. https://doi.org/10.1016/j.rse.2016.03.005
  7. Gyasi-Agyei, Y., G. Willgoose, and F.P. De Troch. 1995. Effects of vertical resolution and map scale of digital elevation models on geomorphological parameters used in hydrology. Hydrological Processes 9(3-4):363-382. https://doi.org/10.1002/hyp.3360090310
  8. Hong, H., J. Liu, D.T. Bui, B. Pradhan, T.D. Acharya, B.T. Pham, A. Zhu, W. Chen, and B.B. Ahmad. 2018. Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China). Catena 163:399-413. https://doi.org/10.1016/j.catena.2018.01.005
  9. Lee, D.H. and T.D. Acharya. 2017. Comparison of complete bouguer anomalies from satellite marine gravity models with shipborne gravity data in East sea, Korea. Journal of Marine Science and Technology 25(6):625-632.
  10. Oksanen, J. and T. Sarjakoski. 2005. Error propagation of DEM-based surface derivatives. Computers & Geosciences 31(8):1015-1027. https://doi.org/10.1016/j.cageo.2005.02.014
  11. Yang, I.T., T.D. Acharya, and D.H. Lee. 2016. Landslide susceptibility mapping for 2015 earthquake region of Sindhupalchowk, Nepal using frequency ratio." Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 34(4):443-451. https://doi.org/10.7848/ksgpc.2016.34.4.443
  12. Yang, I.T., T.D. Acharya, and M.S. Shin. 2014. Cycling: an efficient solution to rising transportation problems in Kathmandu. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 32(6): 617-623. https://doi.org/10.7848/ksgpc.2014.32.6.617