• Title/Summary/Keyword: pipeline construction project

Search Result 21, Processing Time 0.033 seconds

APPLYING A STOCHASTIC LINEAR SCHEDULING METHOD TO PIPELINE CONSTRUCTION

  • Fitria H. Rachmat;Lingguang Song;Sang-Hoon Lee
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.907-913
    • /
    • 2009
  • Pipeline construction is a highly repetitive and resource-intensive process that is exposed to various constraints and uncertainties in the working environment. Effective look-ahead scheduling based on the most recent project performance data can greatly improve project execution and control. This study enhances the traditional linear scheduling method with stochastic simulation to incorporate activity performance uncertainty in look-ahead scheduling. To facilitate the use of this stochastic method, a computer program, Stochastic Linear Scheduling Method (SLSM), was designed and implemented. Accurate look-ahead scheduling can help schedulers to better anticipate problem areas and formulate new plans to improve overall project performance.

  • PDF

Analysis of Data and Information Flow for Pipeline in Permafrost Area

  • Won, Seo-Kyung;Lee, Do-Yun;Lee, Junbok
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.744-745
    • /
    • 2015
  • Since the G20 summit in 2011, South Korea who was dependent on foreign energy needs of 97% receives natural gas from Russia from 2015 to 30 years, but South Korea is a situation of scarce experience and skills of pipeline project in permafrost area. In this study, we kept the target for analyzing the data and information flow of the pipeline projects in permafrost area, and the ultimate goal is set to developing the hierarchy structure of design and construction data for an efficient administration of the project. In order to develop that structure, Configuration Management was introduced and through this method, it is expected to be used to build the overall information management system in O&M phase.

  • PDF

Advanced Alignment-Based Scheduling with Varying Production Rates for Horizontal Construction Projects

  • Greg Duffy;Asregedew Woldesenbet;David Hyung Seok Jeong;Garold D. Oberlender
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.403-411
    • /
    • 2013
  • Horizontal construction projects such as oil and gas pipeline projects typically involve repetitive-work activities with the same crew and equipment from one end of the project to the other. Repetitive scheduling also known as linear scheduling is known to have superior schedule management capabilities specifically for such horizontal construction projects. This study discusses on expanding the capabilities of repetitive scheduling to account for the variance in production rates and visual representation by developing an automated alignment based linear scheduling program for applying temporal and spatial changes in production rates. The study outlines a framework to apply changes in productions rates when and where they will occur along the horizontal alignment of the project and illustrates the complexity of construction through the time-location chart through a new linear scheduling model, Linear Scheduling Model with Varying Production Rates (LSMVPR). The program uses empirically derived production rate equations with appropriate variables as an input at the appropriate time and location based on actual 750 mile natural gas liquids pipeline project starting in Wyoming and terminating in the center of Kansas. The study showed that the changes in production rates due to time and location resulted in a close approximation of the actual progress of work as compared to the planned progress and can be modeled for use in predicting future linear construction projects. LSMVPR allows the scheduler to develop schedule durations based on minimal project information. The model also allows the scheduler to analyze the impact of various routes or start dates for construction and the corresponding impact on the schedule. In addition, the graphical format lets the construction team to visualize the obstacles in the project when and where they occur due to a new feature called the Activity Performance Index (API). This index is used to shade the linear scheduling chart by time and location with the variation in color indicating the variance in predicted production rate from the desired production rate.

  • PDF

Practical Issues in Application of RFID to Pipeline Construction and its Benefit Analysis

  • Yun, Ki Cheol;Oh, Chi Don;Cho, Nam Ho;Kim, Kyong Ju;Park, Chan Sik
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.2
    • /
    • pp.1-7
    • /
    • 2014
  • Radio Frequency Identification (RFID) has been applied to the construction industry for improving the efficiency of material and process management. Most RFID-related studies have focused on building or plant construction. The application of RFID has been limited in pipeline construction projects where materials are stored and stacked across a large construction site. This paper investigates practical issues in pipeline construction, improves the read rates of RFID tags, and tests their utility by putting them into practice. This paper demonstrates the benefits that may be expected with the use of improved RFID tags and the development of an automated pipeline construction management system. As a result, pipeline construction management time decreased by 28 hours per month compared to the conventional method. Cost decreased by about 26%.

A Study on the Data Classification in Engineering Stage of Pipeline Project in Extreme Cold Weather (극한지 파이프라인 프로젝트 설계단계에서의 데이터 분류에 관한 연구)

  • Kim, Chang-Han;Won, Seo-Kyung;Lee, Jun-Bok;Han, Choong-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.214-215
    • /
    • 2014
  • Recently, Russia decided to export an annual 7.5 million tons of natural gas to Korea over 30 years from 2015, as also deal with China, planed to build a pipeline connecting Siberia to Shandong Peninsula about 4000km. Risk management is required depending on the project in extreme cold weather, because it is concerned about the behavior of the seasonal changes in soil temperature and the strain of pipe according to the long-distance pipeline construction. The plan of data management shall be prepared in parallel for a sophisticated risk management, because a data is massive scale and it is generated/accumulated in real time. Therefore, this research is aimed to classify a data items in engineering stage of pipeline by previous studies for managing a generated data depending on the detail works in extreme cold weather. We expect to be provided the foundation of an efficient classification system of a generated data from the pipeline project life cycle.

  • PDF

Establishment of Construction Procedure on the Off Shore Piping Work of a LNG Unloading Project (LNG 하역 플랜트의 Off Shore 배관시공절차 확립에 관한 연구)

  • Kim, Yong-Tan;Moon, Seung-Jae;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.4
    • /
    • pp.80-85
    • /
    • 2009
  • LNG stevedoring plant offshore pipelines requires human power and the longest construction period in constructing LNG storing terminal and influences on the success of the project absolutely. In this paper, the constructing procedures of LNG stevedoring plant offshore pipeline was established. Establishment of constructing procedures of LNG stevedoring plant offshore pipeline includes procurement of main equipments, iron frame and pipelines. To predict any expectable problems, that may occur by the stage of construction the application to the field works with a base of theoretical and practical contents for the constructing procedures of LNG stevedoring plant offshore pipelines can be established.

  • PDF

Three dimensional finite element analysis of 4 inch smart flange on offshore pipeline

  • Moghaddam, Ali Shaghaghi;Mohammadnia, Saeid
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.279-291
    • /
    • 2014
  • Smart flanges are used for pipeline and riser repair in subsea. In a typical case in the gas export pipeline project, the end cap bolts of a 4inch smart flange were broken during operation, and in turn leakage occurred. This work presents the detail of three dimensional finite element analysis of the smart flange to support the observed end cap bolts failure. From finite element analysis it turns out that in the presence of external bending moment, an uneven contact distribution is present between seal and end cap, which in turn changes the uniform load distribution on bolts and threaten the integrity of bolts. On the other hand, 3D finite element analysis of interaction between pipeline and seabed is presented by means of Abaqus to explore the distribution of bending moment along the pipeline route. It is found that lateral buckling occurs in the pipeline which introduces large bending moment.

Hydraulic Design of Natural Gas Transmission Pipeline in the Artic Area (극한지 장거리 천연가스 배관의 유동 설계)

  • Kim, Young-Pyo;Kim, Ho-Yeon;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.2
    • /
    • pp.58-65
    • /
    • 2016
  • Hydraulic analysis of the natural gas transmission pipeline is to determine whether adequate flow can be sustained throughout the design life of pipeline under all expected flow conditions. Many factors have to be considered in the hydraulic design of long-distance pipelines, including the nature, volume, temperature and pressure of fluid to be transported, the length and elevation of pipeline and the environment of terrain traversed. This study reviewed the available gas operation data provided by pipeline construction project in the arctic area and discussed the gas properties such as viscosity and compressibility factor that influence gas flow through a pipeline. Pipeline inside diameter was calculated using several flow equations and pipeline wall thickness was calculated from Barlow's equation applying a safety factor and including the yield strength of the pipe material. The AGA flow equation was used to calculate the pressure drop due to friction, gas temperature and pipeline elevation along the pipeline. The hydraulic design in this study was compared with the report of Alaska Pipeline Project.

A Study on Normal Project Duration for Water Resource Project (수자원시설 건설공사 표준공기 산정을 위한 기초연구)

  • Lee, Bongsu;Kim, Kinam;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • It is important to have enough design and construction duration for infrastructure projects. However, recent water resource project in Korea shows several problems caused by their fast-tract schedule. National Audit Committee report several water resource projects have quality problems caused by insufficient project duration. Especially, water resource projects such as dam and water pipeline construction should have proper time to secure their structure quality. Normal project duration for these projects should be estimated based on previous similar projects' historical data analysis. However there is no standard model which can estimate normal project duration for water resource projects in Korea. There are several normal project duration estimation models for building project developed by public(LH) and private construction companies. However, there is no proper model for water resource projects. So, this study developed normal project duration model for dam and water pipeline projects using historical data and show application of models.

Design of Multi-Regional Water Supply System Based on the Optimization Technique (최적화 기법을 이용한 광역상수도 관로시스템 설계)

  • Kim, Ju Hwan;Kim, Zong Woo;Park, Jae Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.95-112
    • /
    • 1999
  • In this research, it is proposed that optimization method is introduced and applied to the design of pipeline system in multi-regional water supply project, which has been constructed to settle the regional unbalance problems of available water resources. For the purpose, interface programs are developed to integrate linear programming model and KYPIPE model which is used for optimization and hydraulic analysis, respectively. The developed program is applied to the pipeline system design of multi-regional water supply project. The optimal diameters from the application of linear programming technique are compared with those from conventional method that is time-consuming and tedious trail and error process. Since the conventional design largely depends upon the experience of designers and the results of general hydraulic analysis, it can not be reasonable and consistent. The application of linear programming technique can make it possible to design pipeline system optimally by using same design factors of general hydraulic models. The model can select commercial discrete pipe diameter as optimal size by using pipe length as decision variables. The developed model is applied to Pohang multi-regional water supply system design with two different objective functions, which are initial construction cost and annual cost including electric cost. As results, it is calculated that the initial construction cost of 1,449,740 thousand won is saved and annual cost of 128,951 thousand won is saved for a year within study year. Also, the optimal site of pump station is selected on 5th pipe, which is located between the diverging junction to Kangdong(2) province and the diverging junction to Cheonbuk province. It is explained that pump cost is less than pipe cost in this application case study due to little pump station scale. In the case of water supply with large pump capacity, it is reasonal that the increase of pipe size is more efficient instead the increase of pump station capacity to save annual cost.

  • PDF